Temperature-Enhanced Purine Metabolism-Based Versatile SERS Platform for Rapid Clinical Pathogens Diagnosis and Drug-Resistant Assessment

化学 嘌呤 药物代谢 药品 组合化学 纳米技术 药理学 生物化学 新陈代谢 医学 材料科学
作者
Lei Jin,Qiaoqiao Mu,Qing Zhang,Kangsheng Li,Ying Wang,Zelong Jiang,Yan Yang,Dongmei He,Liqin Zhu,Mengyun Li,Xiangyun Gao,Qi Hui,Jinmei Yang,Xiaokun Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (5): 2754-2761 被引量:5
标识
DOI:10.1021/acs.analchem.4c04891
摘要

Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications. To address these issues, we investigated temperature-induced alterations in bacterial purine metabolism and found that robust SERS spectra could be obtained within just 1 h by heating samples to 60 °C. Our study further revealed that pathogens exhibit multiple fingerprint patterns across strains, rather than a uniform spectral signature. To enhance practicality, we optimized ML models by training them on data sets capturing all relevant SERS fingerprints and validated them on separate bacterial strains. The SoftMax classifier achieved 100% accuracy in identifying both laboratory and clinical specimens within 17 h. Additionally, the platform demonstrated over 91% accuracy in distinguishing drug-resistant strains, such as methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae, and achieved 99.66% accuracy in differentiating specific strains within a species, such as enterohemorrhagic Escherichia coli. This accelerated, purine metabolism-based SERS platform offers a highly promising alternative for the rapid diagnosis of bacterial infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangfan发布了新的文献求助10
刚刚
哈哈哈完成签到,获得积分10
1秒前
年轻绮南完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
hjhhjh完成签到,获得积分10
1秒前
1秒前
科研通AI6应助ht采纳,获得10
2秒前
shilly完成签到,获得积分10
2秒前
wnche完成签到,获得积分10
2秒前
有魅力的大船完成签到,获得积分10
2秒前
Amanda完成签到,获得积分10
3秒前
shinnosuke给景海青的求助进行了留言
3秒前
热心的尔蓝完成签到,获得积分10
3秒前
动力小滋完成签到,获得积分10
3秒前
jimmyzheng123发布了新的文献求助10
4秒前
4秒前
mo完成签到,获得积分20
5秒前
鳗鱼灵寒完成签到,获得积分10
5秒前
Akim应助季博常采纳,获得10
5秒前
cdsd发布了新的文献求助10
5秒前
5秒前
邓佳鑫Alan应助yuanyeyy采纳,获得10
5秒前
王文静完成签到,获得积分10
5秒前
zhangfan完成签到,获得积分10
6秒前
六月初八夜完成签到,获得积分10
6秒前
1230完成签到,获得积分10
6秒前
xinhuai完成签到,获得积分10
6秒前
aaaa完成签到,获得积分10
6秒前
WN发布了新的文献求助10
7秒前
helppppp完成签到,获得积分10
7秒前
小任完成签到,获得积分10
7秒前
正直的雅绿完成签到,获得积分10
7秒前
反杀闰土的猹完成签到,获得积分10
7秒前
学术垃圾完成签到,获得积分10
8秒前
WJL完成签到 ,获得积分10
8秒前
Adzuki0812完成签到,获得积分10
8秒前
wb完成签到,获得积分10
9秒前
DSFSR完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392