化学
细胞外小泡
四面体
DNA
小泡
分子
小RNA
生物物理学
计算生物学
纳米技术
细胞生物学
生物化学
结晶学
基因
膜
材料科学
有机化学
生物
作者
Weifeng Liu,Hongwei Yang,Xiaolong Liu,Hongbo Cai,Yuting Bao,Yifei Jiang,Wei Zhou,Jinghe Yuan,Zhen Zhang,Xiaohong Fang
标识
DOI:10.1021/acs.analchem.4c07068
摘要
The ultrasensitive detection of microRNAs (miRNAs) in extracellular vesicles (EVs) can accurately reflect the progress and metastasis of miRNA-mediated intercellular communication, providing an unprecedented opportunity for liquid biopsy. However, due to the low abundance and high heterogeneity of miRNAs in EVs, the ultrasensitive quantification and establishment of a distribution model for miRNA within native EVs remain challenging. Here, we have developed a DNA tetrahedron-based single-molecule fluorescence imaging strategy to overcome this challenge. The internalization efficiency of the probe was as high as 70% without disrupting the native structure of EVs, and combined with single-molecule fluorescence imaging, we achieved in situ imaging analysis of single-copy miRNA in individual EVs without amplification for the first time. A new distribution model for miRNAs has been revealed by statistical analysis of the copy number of miRNAs in EVs across multiple cell lines, characterized by low occupancy and a heterogeneous distribution. More importantly, we found that drug resistance cancer cells promote an increase in the number of drug resistance-related miRNAs within EVs without a corresponding increase in the number of EVs secreted, providing new insights into the EV miRNA sorting mechanisms. We anticipate that this technology will rapidly advance miRNA-mediated intercellular communication based on EVs.
科研通智能强力驱动
Strongly Powered by AbleSci AI