Advancement in piezoelectric nanogenerators for acoustic energy harvesting

能量收集 锆钛酸铅 压电 数码产品 机械能 材料科学 电气工程 声学 能量(信号处理) 工程物理 功率(物理) 光电子学 工程类 铁电性 物理 量子力学 电介质
作者
Fandi Jean,Muhammad Umair Khan,Anas Alazzam,Baker Mohammad
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:10 (1)
标识
DOI:10.1038/s41378-024-00811-4
摘要

Abstract The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device’s design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
annafan发布了新的文献求助10
刚刚
Fan发布了新的文献求助10
1秒前
zong关注了科研通微信公众号
2秒前
JamesPei应助橙浮之年采纳,获得10
2秒前
索多倍完成签到,获得积分10
4秒前
4秒前
科研通AI5应助踏实紫烟采纳,获得30
5秒前
5秒前
鳄鱼不做饿梦完成签到,获得积分10
6秒前
机灵柚子应助T拐拐采纳,获得20
6秒前
水濑心源完成签到,获得积分10
11秒前
科研达人完成签到,获得积分10
14秒前
yumikoo完成签到,获得积分10
15秒前
16秒前
wbgwudi完成签到,获得积分10
16秒前
彩色半烟完成签到,获得积分10
20秒前
健康豆芽菜完成签到 ,获得积分10
22秒前
22秒前
单薄的咖啡完成签到 ,获得积分10
22秒前
橙浮之年发布了新的文献求助10
22秒前
Rue完成签到,获得积分10
24秒前
yyymmma发布了新的文献求助10
24秒前
26秒前
勇者小超人完成签到 ,获得积分10
28秒前
大仙儿完成签到 ,获得积分10
31秒前
飞天817完成签到,获得积分10
36秒前
taotaotao完成签到 ,获得积分10
39秒前
橙浮之年完成签到,获得积分10
40秒前
科研通AI5应助hob采纳,获得10
41秒前
Owen应助王巧巧采纳,获得10
41秒前
无显著差异性完成签到 ,获得积分10
43秒前
呆鸥完成签到,获得积分10
43秒前
44秒前
44秒前
45秒前
赵懂完成签到,获得积分20
46秒前
46秒前
46秒前
今后应助nn采纳,获得10
47秒前
该房地产个人的完成签到,获得积分10
48秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801417
求助须知:如何正确求助?哪些是违规求助? 3347057
关于积分的说明 10331788
捐赠科研通 3063333
什么是DOI,文献DOI怎么找? 1681602
邀请新用户注册赠送积分活动 807626
科研通“疑难数据库(出版商)”最低求助积分说明 763825