Counterfactual rewards promote collective transport using individually controlled swarm microrobots

群体行为 群机器人 群体智能 机器人 过程(计算) 计算机科学 工程类 控制工程 分布式计算 人工智能 机器学习 粒子群优化 操作系统
作者
Veit-Lorenz Heuthe,Emanuele Panizon,Hongri Gu,Clemens Bechinger
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:9 (97): eado5888-eado5888 被引量:25
标识
DOI:10.1126/scirobotics.ado5888
摘要

Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots. Here, we implemented multiagent reinforcement learning (MARL) to generate a control strategy for up to 200 microrobots whose motions are individually controlled by laser spots. During the learning process, we used so-called counterfactual rewards that automatically assign credit to the individual microrobots, which allows fast and unbiased training. With the help of this efficient reward scheme, swarm microrobots learn to collectively transport a large cargo object to an arbitrary position and orientation, similar to ant swarms. We show that this flexible and versatile swarm robotic system is robust to variations in group size, the presence of malfunctioning units, and environmental noise. In addition, we let the robot swarms manipulate multiple objects simultaneously in a demonstration experiment, highlighting the benefits of distributed control and independent microrobot motion. Control strategies such as ours can potentially enable complex and automated assembly of mobile micromachines, programmable drug delivery capsules, and other advanced lab-on-a-chip applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
墨西哥猪肉卷完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
橙子发布了新的文献求助10
1秒前
wwwhhh完成签到,获得积分10
1秒前
木木发布了新的文献求助10
2秒前
3秒前
孝顺的雁芙完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
hpb890311发布了新的文献求助10
7秒前
8秒前
xx完成签到 ,获得积分10
9秒前
9秒前
香蕉觅云应助李键刚采纳,获得10
9秒前
10秒前
蓝桉发布了新的文献求助10
10秒前
10秒前
11秒前
棠臻发布了新的文献求助10
11秒前
君莫笑发布了新的文献求助10
12秒前
Young完成签到 ,获得积分10
13秒前
君兰发布了新的文献求助10
13秒前
善学以致用应助恃6采纳,获得10
14秒前
14秒前
16秒前
bafang发布了新的文献求助10
16秒前
脑洞疼应助木木采纳,获得10
16秒前
drughunter009完成签到 ,获得积分10
16秒前
bkagyin应助克里斯就是逊啦采纳,获得10
16秒前
嘤嘤嘤嘤嘤嘤嘤完成签到 ,获得积分10
18秒前
七七四九发布了新的文献求助10
19秒前
20秒前
bafang完成签到,获得积分10
21秒前
青木蓝发布了新的文献求助10
21秒前
21秒前
万能图书馆应助lml采纳,获得10
21秒前
23秒前
刘宇辰发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492865
求助须知:如何正确求助?哪些是违规求助? 4590758
关于积分的说明 14432450
捐赠科研通 4523400
什么是DOI,文献DOI怎么找? 2478286
邀请新用户注册赠送积分活动 1463327
关于科研通互助平台的介绍 1436054