铜绿假单胞菌
金黄色葡萄球菌
微生物学
耐甲氧西林金黄色葡萄球菌
生物膜
生物
医学
细菌
遗传学
作者
Kalidass Vijayakumar,V. Ganesan,Suganya Kannan
出处
期刊:Biofouling
[Taylor & Francis]
日期:2025-02-05
卷期号:: 1-14
被引量:1
标识
DOI:10.1080/08927014.2025.2460491
摘要
Infections caused by multidrug-resistant pathogens, particularly in ICU settings, pose significant health risks globally. Pseudomonas aeruginosa (PA) and methicillin-resistant Staphylococcus aureus (MRSA) are prominent nosocomial pathogens among the ESKAPE group, known for their resistance mechanisms such as biofilm formation and quorum sensing. Quercetin, a flavonoid found in fruits and vegetables, exhibits diverse pharmacological properties, including antimicrobial activity. This study evaluated quercetin's efficacy against PA and MRSA through in vitro and in vivo experiments. Minimum Inhibitory Concentration (MIC) assays showed MIC values of 158 µg mL-1 for PA and 176 µg mL-1 for MRSA. Quercetin inhibited PA's swarming motility at concentrations as low as 39.5 µg mL-1 and reduced MRSA viability in serum by up to 79%. Quercetin treatment significantly reduced biofilm formation by both pathogens, with Pseudomonas aeruginosa showing biomass reductions of 23% at 1/4 MIC (39.5 µg mL-1) and 48% at 1/2 MIC, while methicillin-resistant Staphylococcus aureus exhibited reductions of 27% at 1/4 MIC and 53% at 1/2 MIC compared to the control. High-content fluorescence imaging demonstrated quercetin's ability to disrupt biofilm structure and viability. Moreover, quercetin suppressed EPS production and protease activity in both PA and MRSA, alongside downregulating virulence-related genes involved in quorum sensing and toxin production. In vivo studies using Caenorhabditis elegans confirmed quercetin's ability to reduce bacterial adherence and colonization. These findings underscore quercetin's potential as a therapeutic agent against multidrug-resistant pathogens in ICU settings, warranting further exploration for clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI