亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle

高光谱成像 TBARS公司 人工智能 硫代巴比妥酸 化学计量学 生物系统 模式识别(心理学) 人工神经网络 化学 数据集 集合(抽象数据类型) 计算机科学 色谱法 抗氧化剂 生物 生物化学 脂质过氧化 程序设计语言
作者
Sung-Min Park,Myongkyoon Yang,Dong-Gyun Yim,Cheorun Jo,Ghiseok Kim
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:350: 111500-111500 被引量:12
标识
DOI:10.1016/j.jfoodeng.2023.111500
摘要

Machine learning models were developed to predict the degree of rancidity of beef by a non-destructive method using a near infrared hyperspectral image acquisition system. The beef subject to the experiment was naturally oxidized during the 15-day cooling process. In a darkroom environment, hyperspectral data cubes were collected using a data acquisition device. Additionally, a technique was developed to selectively extract lean-meat spectra from hyperspectral data obtained from beef that was refrigerated for a variety of lengths of time. Thiobarbituric acid reactive substances (TBARS) experiment was performed in a traditional method to secure reference values for the rancidity level of the sample. Spectra were extracted through data selection and separated by training set and test set. PLSR, ANN, and 1D-CNN techniques were applied to model development. Variable Importance in Projection (VIP) score for the wavelength band was calculated, and the portion judged as valid was cut out to generate a reduced data set. Chemical maps were created for each developed model to visualize the performance of the model. As a result of the development, it was confirmed that the rancidity level of beef could be predicted through a model generated by hyperspectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy0322发布了新的文献求助10
4秒前
烟花应助eghiefefe采纳,获得10
5秒前
NagatoYuki完成签到,获得积分10
15秒前
23秒前
柔弱友菱发布了新的文献求助50
23秒前
SDNUDRUG完成签到,获得积分10
32秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
40秒前
eghiefefe发布了新的文献求助10
46秒前
48秒前
yy0322完成签到,获得积分10
1分钟前
liuxiaoying发布了新的文献求助10
1分钟前
1分钟前
JY完成签到,获得积分20
1分钟前
上官若男应助pysa采纳,获得10
2分钟前
ling2001完成签到,获得积分10
2分钟前
2分钟前
玛琳卡迪马完成签到,获得积分10
3分钟前
4分钟前
pysa发布了新的文献求助10
4分钟前
howgoods完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
仁者无惧完成签到 ,获得积分10
5分钟前
内向的八宝粥完成签到,获得积分10
5分钟前
6分钟前
ffff完成签到 ,获得积分10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
Eve完成签到,获得积分10
7分钟前
无花果应助飘逸蚂蚁采纳,获得10
8分钟前
8分钟前
哇哈哈发布了新的文献求助10
8分钟前
哇哈哈完成签到,获得积分10
8分钟前
andrele应助科研通管家采纳,获得10
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
平常的若雁完成签到,获得积分10
8分钟前
8分钟前
飘逸蚂蚁发布了新的文献求助10
8分钟前
所所应助pysa采纳,获得10
9分钟前
pysa完成签到,获得积分10
9分钟前
活泼的海豚完成签到,获得积分10
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340594
关于积分的说明 10300696
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529