亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A parallel approximate evaluation-based model for multi-objective operation optimization of reservoir group

计算机科学 数学优化 进化算法 人口 粒子群优化 多目标优化 帕累托原理 算法 人工智能 机器学习 数学 社会学 人口学
作者
Dong Liu,Bangyi Tao,Mingjiang Deng,Qiang Huang,Xuesong Wei,Jin Liu
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:78: 101288-101288 被引量:2
标识
DOI:10.1016/j.swevo.2023.101288
摘要

Reservoir operation optimization can boost the efficiency of water resources utilization, but sometimes has huge search space and time-consuming calculation. Approximate evaluation is one of the mainstream methods to assist evolutionary algorithms to efficiently solve such problems. However, most approximation techniques have to constantly correct accuracy during optimization because of the inability to precisely control approximation errors, resulting in a decrease in computational efficiency. Therefore, by fully mining operating information and deeply integrating function evaluation with mutation operator, this study proposes a novel parallel approximate evaluation-based model (PAEM) to enhance search ability and shorten calculation time as well as realizing accurate control of approximation errors, and establishes a multi-objective operation model PAEM-LSTM by combining PAEM and long short-term memory neural network (LSTM) for the fast formulation of operating rule. The results indicate that: (1) under the same parallelization, compared with three multi-objective evolutionary algorithms and two surrogate-based multi-objective algorithms, PAEM provides significantly better Pareto-optimal solutions at a faster speed (e.g. 32 times faster than NSGA-II) while maintaining extremely low approximation errors; (2) small population size and large mutation size are recommended in PAEM, and moreover, the larger the scale of reservoir group, the higher the computational efficiency of PAEM; and (3) compared with conventional operating rule, the operating rule of NSGAII-LSTM increases hydropower generation by 3.45% and reduces ecological water shortage by 29.74%, while the rule of PAEM-LSTM increases hydropower generation by 3.63% and reduces ecological water shortage by 36.74%. This study sheds a new idea for multi-objective operation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
11秒前
12秒前
qiuqiutantan发布了新的文献求助10
16秒前
wswddtd发布了新的文献求助10
17秒前
脑洞疼应助qiuqiutantan采纳,获得30
23秒前
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
月夕完成签到 ,获得积分10
48秒前
48秒前
科研通AI2S应助zxd采纳,获得10
50秒前
CodeCraft应助Corey_huang采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
qiuqiutantan发布了新的文献求助30
1分钟前
Corey_huang发布了新的文献求助10
1分钟前
慕青应助好耶采纳,获得10
1分钟前
科研通AI2S应助qiuqiutantan采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
jump发布了新的文献求助10
1分钟前
zzh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
好耶发布了新的文献求助10
1分钟前
guan发布了新的文献求助10
1分钟前
好耶完成签到,获得积分10
2分钟前
直率芮完成签到 ,获得积分10
2分钟前
慕青应助zzh采纳,获得10
2分钟前
脑洞疼应助小橙子采纳,获得10
2分钟前
HUANWANG发布了新的文献求助10
2分钟前
2分钟前
2分钟前
顾矜应助悦耳的老三采纳,获得10
2分钟前
2分钟前
容布丁发布了新的文献求助10
2分钟前
小橙子发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10359989
捐赠科研通 3068705
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033