A parallel approximate evaluation-based model for multi-objective operation optimization of reservoir group

计算机科学 数学优化 进化算法 人口 粒子群优化 多目标优化 帕累托原理 算法 人工智能 机器学习 数学 社会学 人口学
作者
Dong Liu,Tao Bai,Mingjiang Deng,Qiang Huang,Xiaoting Wei,Jin Liu
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:78: 101288-101288 被引量:13
标识
DOI:10.1016/j.swevo.2023.101288
摘要

Reservoir operation optimization can boost the efficiency of water resources utilization, but sometimes has huge search space and time-consuming calculation. Approximate evaluation is one of the mainstream methods to assist evolutionary algorithms to efficiently solve such problems. However, most approximation techniques have to constantly correct accuracy during optimization because of the inability to precisely control approximation errors, resulting in a decrease in computational efficiency. Therefore, by fully mining operating information and deeply integrating function evaluation with mutation operator, this study proposes a novel parallel approximate evaluation-based model (PAEM) to enhance search ability and shorten calculation time as well as realizing accurate control of approximation errors, and establishes a multi-objective operation model PAEM-LSTM by combining PAEM and long short-term memory neural network (LSTM) for the fast formulation of operating rule. The results indicate that: (1) under the same parallelization, compared with three multi-objective evolutionary algorithms and two surrogate-based multi-objective algorithms, PAEM provides significantly better Pareto-optimal solutions at a faster speed (e.g. 32 times faster than NSGA-II) while maintaining extremely low approximation errors; (2) small population size and large mutation size are recommended in PAEM, and moreover, the larger the scale of reservoir group, the higher the computational efficiency of PAEM; and (3) compared with conventional operating rule, the operating rule of NSGAII-LSTM increases hydropower generation by 3.45% and reduces ecological water shortage by 29.74%, while the rule of PAEM-LSTM increases hydropower generation by 3.63% and reduces ecological water shortage by 36.74%. This study sheds a new idea for multi-objective operation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助hhhhuo采纳,获得10
1秒前
LW90发布了新的文献求助10
3秒前
3秒前
自然的岱周完成签到,获得积分10
4秒前
英姑应助秋秋采纳,获得10
4秒前
漫漫完成签到,获得积分10
4秒前
义气天空完成签到,获得积分10
5秒前
5秒前
5秒前
yijieLU完成签到,获得积分10
6秒前
浮游应助幸福的道天采纳,获得10
6秒前
非常发布了新的文献求助10
6秒前
与闲完成签到,获得积分10
7秒前
简单发布了新的文献求助10
8秒前
龙辉完成签到,获得积分10
8秒前
吴彦祖发布了新的文献求助10
8秒前
9秒前
鳗鱼思真发布了新的文献求助10
9秒前
雷7967发布了新的文献求助10
11秒前
康K发布了新的文献求助30
11秒前
Willwzh完成签到,获得积分10
12秒前
华仔应助要减肥的牛马采纳,获得10
12秒前
13秒前
13秒前
姜大头完成签到,获得积分10
13秒前
爬金字塔的蜗牛完成签到,获得积分10
14秒前
小谭完成签到 ,获得积分10
15秒前
大模型应助光亮妙之采纳,获得10
16秒前
mia完成签到,获得积分10
17秒前
浩然山河完成签到,获得积分10
17秒前
Jasper应助RUI采纳,获得10
18秒前
无语的夜春完成签到,获得积分20
18秒前
18秒前
18秒前
yimu发布了新的文献求助10
19秒前
dDD完成签到,获得积分10
19秒前
laola发布了新的文献求助10
19秒前
文艺沉鱼完成签到 ,获得积分10
19秒前
完美完成签到,获得积分10
19秒前
传奇3应助lc采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5440761
求助须知:如何正确求助?哪些是违规求助? 4551594
关于积分的说明 14230816
捐赠科研通 4472650
什么是DOI,文献DOI怎么找? 2450969
邀请新用户注册赠送积分活动 1441964
关于科研通互助平台的介绍 1418184