A POI Recommendation Model with Temporal-Regional Based Graph Representation Learning

计算机科学 图形 图形数据库 人工智能 数据建模 特征学习 卷积神经网络 机器学习 数据挖掘 理论计算机科学 数据库
作者
Hao Wu
标识
DOI:10.1109/iciscae55891.2022.9927672
摘要

POI recommendation aims to predict the locations that users may be interested in at next time based on the user's historical check-in sequence information. It is a key task to improve customer experience and business operations, which has aroused widespread interest in academia and industry. But it is still challenging due to the diversity of human activities and the sparseness of the available check-in records. In order to cope with these challenges, The paper proposes a recommendation method based on graph representation learning: Temporal-Regional based Graph Convolutional Network (TRGCN) to further improve the accuracy of prediction. The model first builds a multi-graph representation based on the user's check-in record, and at the same time integrates contextual information such as time period and region into the graph. After that, the model learns the representation of each node at a specific time through the graph neural network. In addition, we apply different score functions to evaluate users' preferences for POIs and regions. The experiment performance of TRGCN proves the effectiveness of constructing a multi-graph structure of user check-in records based on spatio-temporal context to learn the representation of graph nodes. In addition, there is a strong correlation between sequence data. Experiments have also proved the effectiveness of recurrent neural network (or its variants) in processing sequence data. At the same time, the attention mechanism will learn more important information from the sequence to further improve model performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丧彪发布了新的文献求助10
1秒前
liuhang完成签到,获得积分10
2秒前
Jasper应助粗心的雪碧采纳,获得10
2秒前
向往发布了新的文献求助10
3秒前
Clovis33完成签到 ,获得积分10
4秒前
英俊的铭应助gzy780819采纳,获得10
5秒前
NN完成签到,获得积分10
6秒前
丧彪完成签到,获得积分10
7秒前
7秒前
向往完成签到,获得积分10
7秒前
10秒前
10秒前
1111发布了新的文献求助10
11秒前
我是老大应助颜色采纳,获得10
11秒前
vic303发布了新的文献求助10
12秒前
kkfly完成签到,获得积分10
15秒前
15秒前
wise111发布了新的文献求助10
16秒前
搜集达人应助qiulong采纳,获得10
18秒前
19秒前
19秒前
八对完成签到,获得积分10
19秒前
CodeCraft应助hyx采纳,获得10
20秒前
CodeCraft应助empty采纳,获得10
20秒前
gzy780819发布了新的文献求助10
21秒前
Alex99发布了新的文献求助10
22秒前
aaaaa完成签到,获得积分10
22秒前
22秒前
朱雪莲发布了新的文献求助10
23秒前
深情安青应助八对采纳,获得10
25秒前
天才莫拉尔完成签到,获得积分10
25秒前
25秒前
mdszf发布了新的文献求助10
25秒前
26秒前
28秒前
烟花应助祝新宇采纳,获得10
29秒前
热心市民应助含蓄垣采纳,获得10
30秒前
耍酷的芷雪完成签到,获得积分20
30秒前
细心书蕾完成签到 ,获得积分10
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451