Microwave Medical Diagnosis System With a Framework to Optimize the Antenna Configuration and Frequency of Operation Using Neural Networks

微波成像 计算机科学 人工神经网络 天线(收音机) 微波食品加热 发射机 电子工程 介电常数 频域 传输(电信) 人工智能 电信 工程类 计算机视觉 电气工程 频道(广播) 电介质
作者
Aysa Jafarifarmand,Tuba Yilmaz,İbrahim Akduman
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:70 (11): 5095-5104 被引量:1
标识
DOI:10.1109/tmtt.2022.3210202
摘要

Using artificial neural networks (NNs) in microwave medical diagnosis is recently of great interest in various problems such as early breast cancer detection, brain stroke, and leukemia monitoring. NNs facilitate the process by directly assessing the presence and properties of the tissues based on the scattered field values. Although the reported studies obtained successful results through the application of NNs to microwave diagnostic problems, they used large numbers of input data. The NN input, referred to as features, for microwave diagnosis is composed of scattered fields namely antenna transmission and reflections at the frequency of choice. Large input data increase both the number of required training samples and computational cost. Optimizing the number of antennas and frequency of operation is therefore critical to improving the performance of NN-based medical diagnosis. This work considers the correlations between the effects of different frequencies and receiver/transmitter (Rx/Tx) antennas separately in order to objectively reduce the number of features. Optimized feed-forward NNs are applied to detect the presence of object(s) with permittivity value above the predefined level within the solution domain. It is performed by designating various permittivity values to the internal object(s). Promising results were obtained by reducing the number of features approximately seven times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cdercder应助wangruize采纳,获得10
1秒前
GB发布了新的文献求助30
1秒前
sq_gong发布了新的文献求助10
2秒前
2秒前
明亮飞双完成签到,获得积分10
2秒前
风中晟睿关注了科研通微信公众号
2秒前
2秒前
lucinda完成签到,获得积分10
3秒前
肥皂剧完成签到,获得积分10
4秒前
火火发布了新的文献求助10
6秒前
6秒前
肥皂剧发布了新的文献求助10
7秒前
8秒前
科目三应助wangruize采纳,获得10
8秒前
美满的稚晴完成签到 ,获得积分10
13秒前
太阳发布了新的文献求助10
13秒前
14秒前
吴吴完成签到,获得积分10
14秒前
wzg666完成签到,获得积分10
15秒前
小红要发文章哦完成签到,获得积分10
20秒前
兮豫完成签到,获得积分10
22秒前
westernline完成签到,获得积分10
23秒前
chen举报陶醉安妮求助涉嫌违规
24秒前
兮豫发布了新的文献求助20
25秒前
悦耳的水卉完成签到,获得积分10
25秒前
无情灯泡发布了新的文献求助10
26秒前
27秒前
28秒前
chen给陶醉安妮的求助进行了留言
29秒前
bingsu108完成签到,获得积分10
30秒前
Shirky完成签到,获得积分10
30秒前
不安的未来完成签到 ,获得积分10
31秒前
zila完成签到,获得积分10
32秒前
CipherSage应助火火采纳,获得10
33秒前
俊逸的奇异果完成签到,获得积分20
33秒前
33秒前
33秒前
赘婿应助111采纳,获得10
34秒前
苻乘风完成签到,获得积分10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248