Bias in group-level EEG microstate analysis

地方政府 集合(抽象数据类型) 计算机科学 人工智能 心理学 脑电图 神经科学 程序设计语言
作者
Michael Murphy,Jinfan Wang,Cuiping Jiang,Leiluo Wang,Nataliia Kozhemiako,Yekun WANG,JQ Pan,Shaun Purcell
标识
DOI:10.1101/2022.11.07.515464
摘要

Abstract Microstate analysis is a promising technique for analyzing high-density electroencephalographic data, but there are multiple questions about methodological best practices. Between and within individuals, microstates can differ both in terms of characteristic topographies and temporal dynamics, which leads to analytic challenges as the measurement of microstate dynamics is dependent on assumptions about their topographies. Here we focus on the analysis of group differences, using simulations seeded on real data from healthy control subjects to compare approaches that derive separate sets of maps within subgroups versus a single set of maps applied uniformly to the entire dataset. In the absence of true group differences in either microstate maps or temporal metrics, we found that using separate subgroup maps resulted in substantially inflated type I error rates. On the other hand, when groups truly differed in their microstate maps, analyses based on a single set of maps confounded topographic effects with differences in other derived metrics. We propose an approach to alleviate both classes of bias, based on a paired analysis of all subgroup maps. We illustrate the qualitative and quantitative impact of these issues in real data by comparing waking versus non-rapid eye movement sleep microstates. Overall, our results suggest that even subtle chance differences in microstate topography can have profound effects on derived microstate metrics and that future studies using microstate analysis should take steps to mitigate this large source of error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wrr完成签到,获得积分10
2秒前
SciGPT应助一团采纳,获得10
2秒前
2秒前
科研通AI6应助hua采纳,获得10
3秒前
3秒前
姜惠发布了新的文献求助10
4秒前
研友_VZG7GZ应助想飞的猪采纳,获得10
4秒前
Ava应助Jr L采纳,获得10
4秒前
嘿嘿应助阿巴阿巴茶采纳,获得10
4秒前
科研通AI5应助独角兽采纳,获得10
5秒前
6秒前
桐桐应助Mrchen采纳,获得10
6秒前
7秒前
8秒前
Qiangzai完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
hzhang0807发布了新的文献求助10
9秒前
10秒前
CWNU_HAN应助风清扬采纳,获得50
11秒前
小咪发布了新的文献求助30
12秒前
13秒前
13秒前
科研小贩发布了新的文献求助10
13秒前
科研通AI5应助勤劳访烟采纳,获得10
13秒前
moony完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
16秒前
爆米花应助粗犷的眼睛采纳,获得10
16秒前
17秒前
17秒前
一塔湖图完成签到,获得积分10
18秒前
19秒前
兴奋采梦发布了新的文献求助10
20秒前
du发布了新的文献求助10
20秒前
20秒前
lz42346发布了新的文献求助10
21秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241256
求助须知:如何正确求助?哪些是违规求助? 3774887
关于积分的说明 11854495
捐赠科研通 3429828
什么是DOI,文献DOI怎么找? 1882599
邀请新用户注册赠送积分活动 934467
科研通“疑难数据库(出版商)”最低求助积分说明 841016