Erasing-inpainting-based data augmentation using denoising diffusion probabilistic models with limited samples for generalized surface defect inspection

修补 人工智能 计算机科学 噪音(视频) 计算机视觉 概率逻辑 图像(数学) 降噪 模式识别(心理学)
作者
Huanjie Tao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 111082-111082 被引量:12
标识
DOI:10.1016/j.ymssp.2023.111082
摘要

Surface defect inspection aims to identify defective regions in product surface images to ensure product quality. Existing deep learning methods have developed rapidly on surface defect inspection. However, their excellent performances rely on a large number of training samples, which are hard to acquire in practical industrial scenarios due to the continuous improvements of the production line. To solve this issue, we propose an erasing-inpainting-based data augmentation method using a denoising diffusion probabilistic model (DDPM) with limited samples for generalized surface defect inspection. Our method is based on the idea that a defect image is difficult to recover to its previous state after undergoing a large-scale erasure operation, thus diverse defect images can be generated using different settings in the inpainting model. Specifically, we first train a DDPM model using limited defective images. Then, we erase large-scale parts of an input image to obtain a degraded image and restore the erased areas using the trained DDPM. Finally, the repaired images are further used for updating the DDPM. The main advantage of our method is to generate diverse images by only being trained using limited training samples. On the one hand, our method fundamentally avoids the dimension inconsistency between the sampled noise and the generated image by sampling from a two-dimensional noise map with the same resolution as the output image based on DDPM. On the other hand, the proposed erasing-inpainting operation promotes the recombination of the real features from the training set and the learned features from the trained DDPM to fully use the limited defective samples and the easily obtainable defect-free samples. Extensive experiments demonstrated the effectiveness and advantages of our model on data augmentation for generalized surface defect inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaolaohu完成签到,获得积分10
刚刚
YZY发布了新的文献求助10
刚刚
健康的朋友完成签到,获得积分20
刚刚
1秒前
潇潇发布了新的文献求助10
1秒前
sleepingfish应助Sense采纳,获得20
1秒前
st发布了新的文献求助10
1秒前
苹果映菱发布了新的文献求助10
2秒前
斯通纳发布了新的文献求助10
2秒前
小殷发布了新的文献求助10
2秒前
Lalny完成签到,获得积分10
2秒前
对啊发布了新的文献求助10
3秒前
3秒前
wwz发布了新的文献求助10
3秒前
王世俊发布了新的文献求助10
3秒前
酷波er应助奇奇采纳,获得10
4秒前
怡然谷雪发布了新的文献求助10
4秒前
可琴完成签到,获得积分10
4秒前
畅快的鲂发布了新的文献求助10
4秒前
Northharbor完成签到,获得积分10
4秒前
5秒前
Yau发布了新的文献求助10
5秒前
zzzjh完成签到,获得积分10
5秒前
6秒前
6秒前
june发布了新的文献求助10
6秒前
王晓完成签到,获得积分10
6秒前
xiaomeng发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
mzw发布了新的文献求助10
6秒前
喵喵完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助Brady6采纳,获得10
6秒前
英俊的铭应助小殷采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352