微塑料
氧化应激
化学
毒性
致癌物
DNA损伤
环境化学
生物化学
DNA
有机化学
作者
Ruiyang Ding,Yueyue Chen,Xuemin Shi,Yang Li,Yang Yu,Zhiwei Sun,Junchao Duan
标识
DOI:10.1016/j.scitotenv.2023.169514
摘要
Microplastics (MPs) and nanoplastics (NPs) have been generally regarded as emerging pollutants and received worldwide attention in recent years. Water and food consumption are the primary pathways for human exposure to MPs/NPs, thus gastrointestinal tracts may be susceptible to their toxicity. Although the recent report has indicated the presence of MPs/NPs in multiple human organs, little is known about their gastric effects. Therefore, this study focused on the adverse effects of polystyrene microplastics (PS-MPs) on gastric epithelium in vivo and in vitro. Surface-enhanced Raman spectroscopy (SERS) revealed the distribution of PS-MPs was associated with their particle sizes, and predominantly concentrated in gastric tissues. Gastric barrier injury and mitochondrial damage were observed in rats after exposure to PS-MPs. Compared with the larger ones, polystyrene nanoplastics (PS-NPs) more significantly reduced the activity of antioxidant enzymes while enhancing the level of MDA, 8-OhdG and γ-H2AX. Meanwhile, PS-MPs caused upregulation of β-catenin/YAP through redox-dependent regulation of nucleoredoxin (NXN) and dishevelled (Dvl). These findings supported the size-dependent effects of PS-MPs on oxidative stress and DNA damage. Moreover, the redox-dependent activation of the β-catenin/YAP cascade suggested a novel toxic mechanism for PS-MPs and implied the potential carcinogenic effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI