Unphysical grain size dependence of lattice thermal conductivity in Mg3(Sb, Bi)2: An atomistic view of concentration dependent segregation effects

材料科学 晶界 粒度 热电效应 热电材料 微晶 凝聚态物理 热导率 格子(音乐) 热的 热传导 热力学 冶金 微观结构 复合材料 物理 声学
作者
Xiaofan Huang,Chengzhi Li,Minhui Yuan,Jing Shuai,Xiangguo Li,Yanglong Hou
出处
期刊:Materials Today Physics [Elsevier BV]
卷期号:43: 101386-101386 被引量:4
标识
DOI:10.1016/j.mtphys.2024.101386
摘要

Grain boundary (GB) engineering is one of the most common strategies to reduce the lattice thermal conductivity and improve thermoelectric materials. However, in the case of the promising thermoelectric material Mg3(Sb1−xBix)2, an abnormal dependence of lattice thermal conductivity on grain size was observed at the concentration of x = 0.25, where smaller grain polycrystalline materials exhibited higher lattice thermal conductivity compared to larger grain materials. The proposed theory about the overestimation of lattice thermal conductivity in inhomogeneous materials with GBs cannot clarify the concentration dependence of this anomaly. Here we elucidate the interplay between segregation, concentration, and lattice thermal conductivity in Mg3(Sb1−xBix)2 alloys through atomistic simulations with a highly accurate machine learning interatomic potential. We find the largest segregation of Bi atoms to GBs in Mg3(Sb1−xBix)2 at the concentration of x = 0.25 for both twist and tilt GB structures due to the combination effects of site spectrality and solute interactions. Our molecular dynamic simulations demonstrate that the pronounced segregation of heavier Bi atoms, particularly at x = 0.25, leads to a substantial increase in the lattice thermal resistance at GBs, thus contributing to the degree of inhomogeneity. The concentration dependent segregation reveals the atomic origin of the observed unphysical inverse relationship between grain size and lattice thermal conductivity at the specific concentration of x = 0.25. These results highlight the need to design the alloy concentration to tune the atomic segregation and tailor the thermal properties of thermoelectric materials with GBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
季风气候完成签到 ,获得积分10
1秒前
Kilin完成签到,获得积分10
3秒前
十个qin天发布了新的文献求助10
4秒前
4秒前
7秒前
小元发布了新的文献求助10
8秒前
9秒前
orixero应助ylky采纳,获得20
9秒前
Memory发布了新的文献求助10
9秒前
Hello应助6633采纳,获得10
10秒前
10秒前
科研通AI5应助十个qin天采纳,获得10
11秒前
dennisysz发布了新的文献求助10
12秒前
CH发布了新的文献求助10
14秒前
zhaoxiao完成签到 ,获得积分10
15秒前
ssgtt发布了新的文献求助10
16秒前
FF完成签到 ,获得积分10
18秒前
zq1992nl完成签到,获得积分10
22秒前
开放芝麻关注了科研通微信公众号
23秒前
JamesPei应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
27秒前
夕诙应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
27秒前
英姑应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
大模型应助科研通管家采纳,获得10
27秒前
orixero应助机智楼房采纳,获得10
28秒前
淡定草丛完成签到 ,获得积分10
28秒前
深情未来完成签到,获得积分10
31秒前
32秒前
TengDa发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103