Machine learning accelerated discovery of corrosion-resistant high-entropy alloys

腐蚀 高熵合金 材料科学 冶金 计算机科学 合金
作者
Cheng Zeng,Andrew Neils,Jack Lesko,Nathan L. Post
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:237: 112925-112925 被引量:18
标识
DOI:10.1016/j.commatsci.2024.112925
摘要

Corrosion has a wide impact on society, causing catastrophic damage to structurally engineered components. An emerging class of corrosion-resistant materials are high-entropy alloys. However, high-entropy alloys live in high-dimensional composition and configuration space, making materials designs via experimental trial-and-error or brute-force ab initio calculations almost impossible. Here we develop a physics-informed machine-learning framework to identify corrosion-resistant high-entropy alloys. Three metrics are used to evaluate the corrosion resistance, including single-phase formability, surface energy and the compactness of oxide films formed on an alloy surface evaluated by Pilling–Bedworth ratios. We used random forest models to predict the single-phase formability, trained on an experimental dataset. Machine learning inter-atomic potentials were employed to calculate surface energies and Pilling–Bedworth ratios, which are trained on first-principles data fast sampled using embedded atom models. A combination of random forest models and high-fidelity machine learning potentials represents the first of its kind to relate chemical compositions to corrosion resistance of high-entropy alloys, paving the way for automatic design of materials with superior corrosion protection. This framework was demonstrated on AlCrFeCoNi high-entropy alloys and we identified composition regions with high corrosion resistance from a wide range of compositions. Machine learning predicted lattice constants and surface energies are consistent with values by first-principles calculations. The predicted single-phase formability and corrosion-resistant compositions of AlCrFeCoNi agree well with experiments. This framework provides a computationally efficient approach to navigate high-dimensional composition space of high-entropy alloys. It is general in its application and applicable to other complex materials, enabling high-throughput screening of material candidates and potentially accelerating the iteration of integrated computational materials engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷的涵蕾完成签到 ,获得积分10
2秒前
LJ_2完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
1002SHIB完成签到,获得积分10
6秒前
nihaolaojiu完成签到,获得积分10
6秒前
sheetung完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
ckz完成签到,获得积分10
8秒前
细心的代天完成签到 ,获得积分10
9秒前
Lexi完成签到 ,获得积分10
14秒前
heavennew完成签到,获得积分10
14秒前
wangqinlei完成签到 ,获得积分10
18秒前
哥哥完成签到,获得积分10
20秒前
贰鸟完成签到,获得积分0
20秒前
31秒前
wujuan1606完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
化学喵完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
优秀的尔风完成签到,获得积分10
1分钟前
周周完成签到,获得积分10
1分钟前
任性的思远完成签到 ,获得积分10
1分钟前
1分钟前
研友_nqrKQZ完成签到 ,获得积分10
1分钟前
醉熏的飞薇完成签到,获得积分10
1分钟前
yu_z完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小羡完成签到 ,获得积分10
1分钟前
00发布了新的文献求助10
1分钟前
多边形完成签到 ,获得积分10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885919
求助须知:如何正确求助?哪些是违规求助? 3427928
关于积分的说明 10757231
捐赠科研通 3152772
什么是DOI,文献DOI怎么找? 1740634
邀请新用户注册赠送积分活动 840318
科研通“疑难数据库(出版商)”最低求助积分说明 785313