Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity

声子 热导率 凝聚态物理 应变工程 拉伤 材料科学 热稳定性 格子(音乐) 复合材料 物理 生物 量子力学 声学 相变 解剖
作者
Zhe Shi,Evgenii Tsymbalov,Wencong Shi,Ariel Rebekah Barr,Qingjie Li,Jiangxu Li,Xing‐Qiu Chen,Ming Dao,S. Suresh,Ju Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (8)
标识
DOI:10.1073/pnas.2313840121
摘要

Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications. However, a general scientific framework to guide the design of engineering materials through such elastic strain engineering (ESE) has not yet been developed. By combining first-principles calculations with ML, we present here a general approach to map out the entire phonon stability boundary in six-dimensional strain space, which can guide the ESE of a material without phase transitions. We focus on ESE of vibrational properties, including harmonic phonon dispersions, nonlinear phonon scattering, and thermal conductivity. While the framework presented here can be applied to any material, we show as an example demonstration that the room-temperature lattice thermal conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials and devices through the purposeful design of homogeneous or inhomogeneous strains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丁的发布了新的文献求助10
刚刚
十七发布了新的文献求助10
刚刚
烂漫破茧完成签到,获得积分20
1秒前
小满完成签到,获得积分10
1秒前
落落完成签到,获得积分20
2秒前
一个发布了新的文献求助10
2秒前
坚定的安白完成签到,获得积分10
2秒前
mojibunny完成签到,获得积分10
2秒前
3秒前
hui完成签到,获得积分10
3秒前
3秒前
zjt完成签到,获得积分10
3秒前
4秒前
落落发布了新的文献求助10
4秒前
4秒前
更好的我完成签到,获得积分10
5秒前
cccyyb完成签到 ,获得积分10
5秒前
王多渔!发布了新的文献求助10
5秒前
5秒前
香蕉觅云应助Yeyuntian采纳,获得10
6秒前
月儿完成签到,获得积分20
6秒前
安德鲁完成签到 ,获得积分10
7秒前
Old-Iron发布了新的文献求助10
7秒前
留胡子的白猫完成签到,获得积分20
8秒前
8秒前
9秒前
月儿发布了新的文献求助10
9秒前
YJK完成签到,获得积分10
9秒前
无花果应助十七采纳,获得10
9秒前
金容完成签到,获得积分10
9秒前
zifeiyu123关注了科研通微信公众号
10秒前
10秒前
852应助寻寻觅觅冷冷清清采纳,获得10
10秒前
好好学习发布了新的文献求助10
10秒前
刘源完成签到,获得积分10
11秒前
11秒前
干焱完成签到,获得积分10
13秒前
13秒前
一别如斯完成签到,获得积分10
14秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2452032
求助须知:如何正确求助?哪些是违规求助? 2124840
关于积分的说明 5408275
捐赠科研通 1853563
什么是DOI,文献DOI怎么找? 921883
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493140