Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis

计算机科学 水准点(测量) 同态加密 软件 加密 机器学习 构造(python库) 数据挖掘 人工智能 计算机安全 操作系统 计算机网络 大地测量学 地理
作者
Ying Liu Ying Liu,Yong Liu,Ming Wen Yong Li,Wenjing Zhang Ming Wen
出处
期刊:Journal of Internet Technology [Taiwan Academic Network]
卷期号:24 (6): 1177-1187
标识
DOI:10.53106/160792642023112406001
摘要

<p>Federated learning is a privacy-preserving machine learning technique that coordinates multi-participant co-modeling. It can alleviate the privacy issues of software defect prediction, which is an important technical way to ensure software quality. In this work, we implement Federated Software Defect Prediction (FedSDP) and optimize its privacy issues while guaranteeing performance. We first construct a new benchmark to study the performance and privacy of Federated Software defect prediction. The benchmark consists of (1) 12 NASA software defect datasets, which are all real software defect datasets from different projects in different domains, (2) Horizontal federated learning scenarios, and (3) the Federated Software Defect Prediction algorithm (FedSDP). Benchmark analysis shows that FedSDP provides additional privacy protection and security with guaranteed model performance compared to local training. It also reveals that FedSDP introduces a large amount of model parameter computation and exchange during the training process. There are model user threats and attack challenges from unreliable participants. To provide more reliable privacy protection without losing prediction performance we proposed optimization methods that use homomorphic encryption model parameters to resist honest but curious participants. Experimental results show that our approach achieves more reliable privacy protection with excellent performance on all datasets.</p> <p>&nbsp;</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世间安得双全法完成签到,获得积分0
3秒前
4秒前
4秒前
8秒前
小元发布了新的文献求助10
8秒前
Punch完成签到,获得积分10
8秒前
Unicorn发布了新的文献求助10
8秒前
13秒前
14秒前
14秒前
小奋青完成签到 ,获得积分10
15秒前
15秒前
852应助joleisalau采纳,获得10
16秒前
LGJ完成签到,获得积分10
18秒前
深情安青应助lizhiqian2024采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
joker_k应助科研通管家采纳,获得20
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
高山流水应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
Ava应助科研通管家采纳,获得10
21秒前
21秒前
Tang完成签到 ,获得积分10
22秒前
25秒前
zer0完成签到,获得积分10
25秒前
26秒前
汉堡包应助librahapper采纳,获得10
26秒前
Akim应助单纯的雅香采纳,获得80
28秒前
大个应助等待的雪碧采纳,获得10
28秒前
31秒前
jeff发布了新的文献求助10
31秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777986
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215128
捐赠科研通 3038833
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339