Self-Supervised Node Representation Learning via Node-to-Neighbourhood Alignment

计算机科学 理论计算机科学 图形 特征学习 人工智能 节点(物理) 平滑的 结构工程 工程类 计算机视觉
作者
Wei Dong,Dawei Yan,Peng Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (6): 4218-4233 被引量:2
标识
DOI:10.1109/tpami.2024.3358541
摘要

Self-supervised node representation learning aims to learn node representations from unlabelled graphs that rival the supervised counterparts. The key towards learning informative node representations lies in how to effectively gain contextual information from the graph structure. In this work, we present simple-yet-effective self-supervised node representation learning via aligning the hidden representations of nodes and their neighbourhood. Our first idea achieves such node-to-neighbourhood alignment by directly maximizing the mutual information between their representations, which, we prove theoretically, plays the role of graph smoothing. Our framework is optimized via a surrogate contrastive loss and a Topology-Aware Positive Sampling (TAPS) strategy is proposed to sample positives by considering the structural dependencies between nodes, which enables offline positive selection. Considering the excessive memory overheads of contrastive learning, we further propose a negative-free solution, where the main contribution is a Graph Signal Decorrelation (GSD) constraint to avoid representation collapse and over-smoothing. The GSD constraint unifies some of the existing constraints and can be used to derive new implementations to combat representation collapse. By applying our methods on top of simple MLP-based node representation encoders, we learn node representations that achieve promising node classification performance on a set of graph-structured datasets from small- to large-scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥嚎发布了新的文献求助60
2秒前
damieob完成签到,获得积分10
3秒前
善学以致用应助Biscotti采纳,获得10
3秒前
3秒前
深情安青应助辣辣采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
完美世界应助GamePlayer采纳,获得10
5秒前
JamesPei应助GamePlayer采纳,获得10
5秒前
汉堡包应助GamePlayer采纳,获得10
5秒前
深情安青应助GamePlayer采纳,获得10
5秒前
CodeCraft应助GamePlayer采纳,获得10
5秒前
桐桐应助GamePlayer采纳,获得10
5秒前
烟花应助GamePlayer采纳,获得10
5秒前
爆米花应助GamePlayer采纳,获得10
5秒前
Ava应助GamePlayer采纳,获得10
5秒前
青禾完成签到,获得积分10
5秒前
科研通AI5应助GamePlayer采纳,获得10
5秒前
5秒前
慕青应助张祖伦采纳,获得10
7秒前
吃惊橘子完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
优美飞薇发布了新的文献求助10
9秒前
WWW发布了新的文献求助10
9秒前
hnxxangel完成签到,获得积分10
9秒前
9秒前
王鴻源关注了科研通微信公众号
10秒前
潮鸣完成签到 ,获得积分10
10秒前
田様应助火火采纳,获得10
10秒前
搜集达人应助刘厚麟采纳,获得10
12秒前
13秒前
研友_想想发布了新的文献求助10
13秒前
13秒前
orixero应助刘荣圣采纳,获得10
14秒前
reeedirect发布了新的文献求助10
14秒前
15秒前
科研通AI5应助要减肥飞机采纳,获得10
16秒前
清秀寇完成签到,获得积分10
17秒前
勿明发布了新的文献求助10
18秒前
ShaotangLi发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589978
求助须知:如何正确求助?哪些是违规求助? 4004982
关于积分的说明 12399902
捐赠科研通 3681978
什么是DOI,文献DOI怎么找? 2029363
邀请新用户注册赠送积分活动 1062975
科研通“疑难数据库(出版商)”最低求助积分说明 948558