Radiology weather forecast: A retrospective analysis of predictability of median daily polytrauma-CT occurrence based on weather data

多发伤 医学 逻辑回归 随机森林 急诊分诊台 机器学习 气象学 人工智能 急诊医学 内科学 计算机科学 物理
作者
Martin Segeroth,Jan Vosshenrich,Hanns‐Christian Breit,Jakob Wasserthal,Tobias Heye
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:170: 111269-111269
标识
DOI:10.1016/j.ejrad.2023.111269
摘要

Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information.All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation.More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters.It is possible to forecast above or below median daily number of polytrauma-CTs using weather data.Prediction of polytrauma-CT examination volumes may be used to improve resource planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助qq1215采纳,获得10
刚刚
自然飞机发布了新的文献求助10
1秒前
漂亮的倒挂金钩完成签到,获得积分10
1秒前
2秒前
Sylus发布了新的文献求助10
2秒前
小星星很忙完成签到,获得积分10
2秒前
Lion发布了新的文献求助10
2秒前
咩咩完成签到,获得积分20
4秒前
gbx完成签到,获得积分10
6秒前
6秒前
RRRZZ完成签到 ,获得积分10
6秒前
琦琦发布了新的文献求助10
7秒前
8秒前
9秒前
科研通AI2S应助zhian采纳,获得30
9秒前
丘比特应助小西米采纳,获得10
10秒前
孤独的珩完成签到,获得积分10
11秒前
echo完成签到,获得积分10
11秒前
落后乐蓉发布了新的文献求助10
11秒前
临诗发布了新的文献求助10
13秒前
取名叫做利完成签到,获得积分10
14秒前
15秒前
橙味美年达完成签到,获得积分10
15秒前
可爱的函函应助烂漫草莓采纳,获得10
16秒前
Clearly完成签到 ,获得积分10
16秒前
XXXXL发布了新的文献求助10
16秒前
17秒前
FashionBoy应助丽丽采纳,获得30
17秒前
李健应助xiu-er采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
NexusExplorer应助段采萱采纳,获得10
20秒前
研友_CCQ_M完成签到,获得积分10
20秒前
丁温暖完成签到 ,获得积分10
21秒前
上官若男应助decademe采纳,获得10
21秒前
茉莉发布了新的文献求助10
21秒前
pentjy完成签到,获得积分10
22秒前
XXXXL完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761