Deep Reinforcement Learning for Task Allocation in Energy Harvesting Mobile Crowdsensing

计算机科学 任务(项目管理) 强化学习 无线传感器网络 实时计算 无线 能量(信号处理) 能量收集 频道(广播) 分布式计算 拥挤感测 人工智能 机器学习 计算机网络 数据科学 工程类 电信 统计 系统工程 数学
作者
Sumedh Dongare,Andrea Ortiz,Anja Klein
标识
DOI:10.1109/globecom48099.2022.10001204
摘要

Mobile crowd-sensing (MCS) is an upcoming sensing architecture which provides better coverage, accuracy, and requires lower costs than traditional wireless sensor networks. It utilizes a collection of sensors, or crowd, to perform various sensing tasks. As the sensors are battery operated and require a mechanism to recharge them, we consider energy harvesting (EH) sensors to form a sustainable sensing architecture. The execution of the sensing tasks is controlled by the mobile crowd-sensing platform (MCSP) which makes task allocation decisions, i.e., it decides whether or not to perform a task depending on the available resources, and if the task is to be performed, assigns it to suitable sensors. To make optimal allocation decisions, the MCSP requires perfect non-causal knowledge regarding the channel coefficients of the wireless links to the sensors, the amounts of energy the sensors harvest and the sensing tasks to be performed. However, in practical scenarios this non-causal knowledge is not available at the MCSP. To overcome this problem, we propose a novel Deep-Q-Network solution to find the task allocation strategy that maximizes the number of completed tasks using only realistic causal knowledge of the battery statuses of the available sensors. Through numerical evaluations we show that our proposed approach performs only 7.8% lower than the optimal solution. Moreover, it outperforms the myopically optimal and the random task allocation schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
彭于晏应助lulu采纳,获得10
3秒前
3秒前
4秒前
4秒前
拉塞尔....发布了新的文献求助10
4秒前
无奈安莲发布了新的文献求助10
5秒前
5秒前
搜集达人应助无辜的半仙采纳,获得50
5秒前
ZJX应助你好好想想采纳,获得10
5秒前
wxy发布了新的文献求助10
5秒前
希望天下0贩的0应助小易采纳,获得10
8秒前
123456发布了新的文献求助10
8秒前
天天快乐应助执着的翩跹采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
14秒前
荷包蛋发布了新的文献求助20
14秒前
充电宝应助dsfdsaf采纳,获得10
14秒前
15秒前
Psycho发布了新的文献求助30
17秒前
爆米花应助123456采纳,获得10
17秒前
完美世界应助123456采纳,获得10
17秒前
lulu发布了新的文献求助10
17秒前
小二发布了新的文献求助10
17秒前
4114完成签到,获得积分10
18秒前
seven完成签到 ,获得积分10
19秒前
喜悦发布了新的文献求助10
20秒前
今后应助根系内生菌采纳,获得10
21秒前
哈哈发布了新的文献求助10
21秒前
赘婿应助俭朴凝丹采纳,获得10
21秒前
lynn发布了新的文献求助10
22秒前
22秒前
爆米花应助纯真的十三采纳,获得10
22秒前
23秒前
甜甜圈完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312