Multidimensional graphic art design method based on visual analysis technology in intelligent environment

计算机科学 人工智能 渲染(计算机图形) 目标检测 像素 计算机视觉 分割
作者
Xiaoyu Yan
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (06)
标识
DOI:10.1117/1.jei.32.6.062507
摘要

In the last few years, the artificial intelligence technology has provided unique methods for design analysis in the art field. With the development of China’s economy and cultural prosperity, graphic design has changed people’s lives greatly. Under the concept of modern scientific and technological creation, the variety, scale, and plasticity of graphic design art are constantly improving, and the diversification of design elements is becoming the development trend. We designed a graphic art element recognition model based on single shot multibox detector (SSD) method through deep learning of visual processing technology. This method can automatically identify various elements in multidimensional graphic art works, thus helping artists and learners analyze an art work better. In this method, we take the SSD structure as the main model backbone and use the improved attention mechanism module feature pyramid transformer to replace the original feature fusion module, inject long-distance dependency into the model, and improve the accuracy of object detection. In addition, we use the public dataset to make the relevant image target detection dataset. Different object detection evaluation metrics are used to evaluate the proposed methods, and several existing methods are selected for comparative experiments. Compared with YOLO V5 object detection model, our method improves 0.53%, 0.67%, 1.33%, and 1.28% on pixel accuracy, mean pixel accuracy, average recall, and mean intersection over union, respectively. The proposed algorithm has a great contribution to the performance improvement of object detection and the auxiliary analysis of multidimensional works of art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
刚刚
嘿嘿发布了新的文献求助30
1秒前
李健的小迷弟应助龙研采纳,获得10
2秒前
正直涵菱发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
科研通AI5应助英勇羿采纳,获得10
7秒前
8秒前
tl发布了新的文献求助10
9秒前
9秒前
powero发布了新的文献求助10
9秒前
10秒前
文右三完成签到,获得积分10
10秒前
MchemG应助ho采纳,获得30
10秒前
刘梦通关注了科研通微信公众号
11秒前
不配.应助xiaosu采纳,获得30
12秒前
蘑菇发布了新的文献求助10
12秒前
李爱国应助strings采纳,获得10
13秒前
金刚大王发布了新的文献求助10
13秒前
lianglimay发布了新的文献求助10
14秒前
ss发布了新的文献求助30
14秒前
14秒前
14秒前
JC完成签到,获得积分10
15秒前
寰宇完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
龙研发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
Ray发布了新的文献求助10
19秒前
君大帅完成签到,获得积分10
22秒前
科小白给科小白的求助进行了留言
22秒前
桐桐应助宠仙采纳,获得10
22秒前
Aintzane关注了科研通微信公众号
24秒前
谨慎鞅完成签到,获得积分10
24秒前
ss完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268517
求助须知:如何正确求助?哪些是违规求助? 3799548
关于积分的说明 11909480
捐赠科研通 3446458
什么是DOI,文献DOI怎么找? 1890719
邀请新用户注册赠送积分活动 941456
科研通“疑难数据库(出版商)”最低求助积分说明 845635