五次函数
分叉
孤子
椭圆函数
双曲函数
数学分析
非线性系统
非线性薛定谔方程
雅可比矩阵与行列式
数学
三角函数
包络线(雷达)
功能(生物学)
物理
薛定谔方程
应用数学
量子力学
几何学
计算机科学
电信
雷达
进化生物学
生物
作者
Aly R. Seadawy,Syed T. R. Rizvi,Bazgha Mustafa,Kashif Ali
标识
DOI:10.1016/j.rinp.2023.107187
摘要
In this research, the complete discriminant system (CDS) of polynomial method (CDSPM) will be applied to analyze the dynamic characteristics of the cubic-quintic nonlinear Schrodinger equation (CQNLSE) with an additional anti-cubic nonlinear term (CQNLSE-AC) with a particular emphasis on the introduction of various optical solitons and wave structures. Our analysis of the CQNLSE-AC illustrates the importance of CDSPM, and we give dynamic results, such as critical conditions and bifurcation points for solutions. Additionally, we determine several types of optical soliton solutions, including Jacobian elliptic function (JEF), hyperbolic function, and trigonometric function solutions, and also convert JEF into solitary wave (SW) solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI