亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IFN-γ ELISpot-enabled machine learning for culprit drug identification in nonimmediate drug hypersensitivity

埃利斯波特 医学 罪魁祸首 药物过敏 药品 鉴定(生物学) 内科学 免疫学 药理学 生物 抗原 植物 心肌梗塞 CD8型
作者
Yuda Chongpison,Sira Sriswasdi,Supranee Buranapraditkun,Pattarawat Thantiworasit,Pawinee Rerknimitr,Pungjai Mongkolpathumrat,Leena Chularojanamontri,Yuttana Srinoulprasert,Ticha Rerkpattanapipat,Kumutnart Chanprapaph,Wareeporn Disphanurat,Panlop Chakkavittumrong,Napatra Tovanabutra,Chutika Srisuttiyakorn,Chonlaphat Sukasem,Papapit Tuchinda,Padcha Pongcharoen,Jettanong Klaewsongkram
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:153 (1): 193-202 被引量:9
标识
DOI:10.1016/j.jaci.2023.08.026
摘要

Background

Diagnosing drug-induced allergy, especially nonimmediate phenotypes, is challenging. Incorrect classifications have unwanted consequences.

Objective

We sought to evaluate the diagnostic utility of IFN-γ ELISpot and clinical parameters in predicting drug-induced nonimmediate hypersensitivity using machine learning.

Methods

The study recruited 393 patients. A positive patch test or drug provocation test (DPT) was used to define positive drug hypersensitivity. Various clinical factors were considered in developing random forest (RF) and logistic regression (LR) models. Performances were compared against the IFN-γ ELISpot-only model.

Results

Among the 102 patients who had 164 DPTs, most patients had severe cutaneous adverse reactions (35/102, 34.3%) and maculopapular exanthems (33/102, 32.4%). Common suspected drugs were antituberculosis drugs (46/164, 28.1%) and β-lactams (42/164, 25.6%). Mean (SD) age of patients with DPT was 52.7 (20.8) years. IFN-γ ELISpot, fixed drug eruption, Naranjo categories, and nonsteroidal anti-inflammatory drugs were the most important features in all developed models. The RF and LR models had higher discriminating abilities. An IFN-γ ELISpot cutoff value of 16.0 spot-forming cells/106 PBMCs achieved 94.8% specificity and 57.1% sensitivity. Depending on clinical needs, optimal cutoff values for RF and LR models can be chosen to achieve either high specificity (0.41 for 96.1% specificity and 0.52 for 97.4% specificity, respectively) or high sensitivity (0.26 for 78.6% sensitivity and 0.37 for 71.4% sensitivity, respectively).

Conclusions

IFN-γ ELISpot assay was valuable in identifying culprit drugs, whether used individually or incorporated in a prediction model. Performances of RF and LR models were comparable. Additional test datasets with DPT would be helpful to validate the model further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助挣钱抱男模采纳,获得10
6秒前
我是老大应助YY采纳,获得30
31秒前
32秒前
一只鲨呱完成签到 ,获得积分10
1分钟前
灵巧的代芙完成签到 ,获得积分10
1分钟前
1分钟前
烟花应助朗源Wu采纳,获得10
2分钟前
2分钟前
ZZ发布了新的文献求助10
2分钟前
2分钟前
2分钟前
开朗子默发布了新的文献求助20
2分钟前
执着的草丛完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
gooooood完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
梅者如西发布了新的文献求助30
3分钟前
3分钟前
3分钟前
he发布了新的文献求助10
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
qpp完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助梅者如西采纳,获得10
3分钟前
烟花应助梅者如西采纳,获得10
3分钟前
Ccc发布了新的文献求助10
3分钟前
4分钟前
小马甲应助he采纳,获得10
4分钟前
zhoushishan完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
单薄水星发布了新的文献求助10
4分钟前
U87完成签到,获得积分10
4分钟前
单薄水星完成签到,获得积分10
4分钟前
4分钟前
朗源Wu发布了新的文献求助10
5分钟前
5分钟前
朱志伟发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470146
求助须知:如何正确求助?哪些是违规求助? 4573063
关于积分的说明 14338019
捐赠科研通 4500055
什么是DOI,文献DOI怎么找? 2465527
邀请新用户注册赠送积分活动 1453892
关于科研通互助平台的介绍 1428508