Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3

基质金属蛋白酶 鉴定(生物学) 卵巢癌 计算生物学 癌症研究 计算机科学 癌症 医学 生物 内科学 植物
作者
Khushboo Sinha,Shahid Parwez,Shahana MV,Ananya Yadav,Mohammad Imran Siddiqi,Dibyendu Banerjee
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (13): 6823-6841 被引量:3
标识
DOI:10.1080/07391102.2023.2240416
摘要

MMP-9, also known as gelatinase B, is a zinc-metalloproteinase family protein that plays a key role in the degradation of the extracellular matrix (ECM). The normal function of MMP-9 includes the breakdown of ECM, a process that aids in normal physiological processes such as embryonic development, angiogenesis, etc. Interruptions in these processes due to the over-expression or downregulation of MMP-9 are reported to cause some pathological conditions like neurodegenerative diseases and cancer. In the present study, an integrated approach for ML-based virtual screening of the Maybridge library was carried out and their biological activity was tested in an attempt to identify novel small molecule scaffolds that can inhibit the activity of MMP-9. The top hits were identified and selected for target-based activity against MMP-9 protein using the kit (Biovision K844). Further, MTT assay was performed in various cancer cell lines such as breast (MCF-7, MDA-MB-231), colorectal (HCT119, DL-D-1), cervical (HeLa), lung (A549) and ovarian cancer (SKOV3). Interestingly, one compound viz., RJF02215 exhibited anti-cancer activity selectively in SKOV3. Wound healing assay and colony formation assay performed on SKOV3 cell line in the presence of RJF02215 confirmed that the compound had a significant inhibitory effect on this cell line. Thus, we have identified a novel molecule that can inhibit MMP-9 activity in vitro and inhibits the proliferation of SKOV3 cells. Novel molecules based on the structure of RJF02215 may become a good value addition for the treatment of ovarian cancer by exhibiting selective MMP-9 activity.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovehuahua发布了新的文献求助10
3秒前
we发布了新的文献求助10
4秒前
啦啦啦完成签到,获得积分10
4秒前
小星发布了新的文献求助30
4秒前
lucas发布了新的文献求助10
5秒前
科研通AI6应助菩提石头采纳,获得10
5秒前
zky完成签到,获得积分20
6秒前
奇趣糖发布了新的文献求助20
7秒前
陈哇塞完成签到,获得积分20
7秒前
彭茜关注了科研通微信公众号
8秒前
烟花应助we采纳,获得10
11秒前
整齐便当发布了新的文献求助10
12秒前
yyzhou应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得200
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
雨姐科研应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得30
16秒前
宅多点应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
yyzhou应助科研通管家采纳,获得10
16秒前
雨姐科研应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
boltos应助chenzhi采纳,获得10
16秒前
yyzhou应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助陈哇塞采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
ilihe应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Xulyun完成签到 ,获得积分10
19秒前
22秒前
Chiuchiu完成签到,获得积分10
25秒前
26秒前
小二郎应助奇趣糖采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915