A Cognitively Confidence-Debiased Adversarial Fuzzy Apriori Method

先验与后验 一般化 计算机科学 人工智能 模糊逻辑 数据挖掘 算法 机器学习 数学 哲学 认识论 数学分析
作者
Runshan Xie,Fu-Lai Chung,Shitong Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 1303-1317 被引量:5
标识
DOI:10.1109/tfuzz.2023.3323027
摘要

By discretizing continuous attributes of data with fuzzy rather than crisp sets and then generating fuzzy association rules from data to summarize the relationship between the attributes and class labels, fuzzy Apriori method (FAM) features in both its promising data mining performance and its strong uncertainty-handling capability. However, FAM successively expands shorter rules into longer ones and simultaneously discards short rules that perform poorly on the training data, which inevitably results in highly correlated rules and hence deteriorates its generalization capability. By designing a novel cognitively confidence-debiased adversarial attack on fuzzy association rules, an a dversarial f uzzy A priori m ethod (FA 2 M) is proposed in this study to ensure enhanced generalization capability of FAM. FA 2 M has three distinct merits: (1) reliable analysis about why adversarial attacks should be directly exerted on confidence and support's values of fuzzy association rules instead of inputs and/or outputs. (2) cognitively behavioral inspiration by actively debiasing a small amount of cognitive base-rate biases in a disturbed way during the generation of FAM's rules while such a bias means that humans tend to ignore the base rates of fuzzy association rules during their plausibility evaluation. In other words, the active usage of the proposed cognitively confidence-debiased adversarial attack may be beneficial for FA 2 M to obtain higher generalization capabilities. (3) theoretical guarantee about FA 2 M's enhanced generalization and overfitting-avoidance capabilities. Extensive experimental results show that FA 2 M attains satisfactory classification performance and enhanced generalization capability while maintaining the interpretability of fuzzy association rules therein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助efls采纳,获得10
刚刚
大龙哥886应助upupup采纳,获得10
刚刚
1秒前
2秒前
3秒前
fairy完成签到,获得积分20
3秒前
4秒前
DYQ完成签到,获得积分10
4秒前
5秒前
欢呼的过客完成签到,获得积分10
5秒前
5秒前
yyx驳回了田様应助
5秒前
loxx发布了新的文献求助10
6秒前
6秒前
缥缈的帅哥应助晚风采纳,获得20
7秒前
wenyaq完成签到,获得积分10
7秒前
rxh完成签到,获得积分20
8秒前
CodeCraft应助清酒采纳,获得10
9秒前
聪慧砖头发布了新的文献求助10
10秒前
10秒前
武武武完成签到,获得积分10
11秒前
11秒前
fairy关注了科研通微信公众号
11秒前
小连发布了新的文献求助10
11秒前
洁净的钢笔完成签到,获得积分10
12秒前
sunflower完成签到,获得积分0
12秒前
自觉远山发布了新的文献求助10
12秒前
sdjf关注了科研通微信公众号
13秒前
rxh发布了新的文献求助30
14秒前
16秒前
勤奋耳机发布了新的文献求助10
17秒前
ddddd发布了新的文献求助10
17秒前
18秒前
科研通AI2S应助无畏山海采纳,获得10
19秒前
20秒前
leungzzz发布了新的文献求助10
21秒前
夜曲发布了新的文献求助10
21秒前
21秒前
秦波完成签到,获得积分10
22秒前
汉堡包应助yj采纳,获得10
23秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382591
求助须知:如何正确求助?哪些是违规求助? 4505701
关于积分的说明 14022478
捐赠科研通 4415103
什么是DOI,文献DOI怎么找? 2425372
邀请新用户注册赠送积分活动 1418138
关于科研通互助平台的介绍 1396207