异质结
肖特基势垒
材料科学
锂(药物)
肖特基二极管
肖特基效应
电解质
光电子学
化学
电极
医学
二极管
内分泌学
物理化学
作者
Junpeng Xiao,Peng Yu,Hong Gao,Jing Yao
标识
DOI:10.1016/j.jcis.2023.08.036
摘要
Schottky heterostructures have significant advantages for exciting charge transfer kinetics at material interfaces. In this work, endogenous Nb2CTx/Nb2O5 Schottky heterostructures with a large active surface area were constructed using an in-situ architectural strategy. The semiconductor Nb2O5 has a low work function, and during the construction of Nb2CTx/Nb2O5 Schottky heterostructures, there was an interfacial electron transfer, which resulted in a built-in electric field. The electrochemical reaction kinetics of Nb2CTx/Nb2O5 Schottky heterostructures were enhanced due to the rapid transfer of charge driven by the electric field. The Nb2CTx/Nb2O5 Schottky heterostructures have a large active surface area, which contributes to excellent electrolyte diffusion kinetics. Therefore, Nb2CTx/Nb2O5 Schottky heterostructures have excellent lithium-ion storage capacity with 575 mAh/g after 200 cycles at 0.10 A/g, and 290 mAh/g after 1000 cycles at 2.00 A/g, without capacity fading. Furthermore, in-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy analyses reveal the mechanisms for structure evolution and lithium-ion storage optimization of Nb2CTx/Nb2O5 Schottky heterostructures during the electrochemical reaction. The construction of Schottky heterostructures with excited charge transport kinetics provides a novel idea for optimizing the lithium-ion storage activity of MXenes materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI