Res-TranBiLSTM: An intelligent approach for intrusion detection in the Internet of Things

计算机科学 入侵检测系统 人工智能 特征提取 数据挖掘 互联网 机器学习 万维网
作者
Shiyu Wang,Wenxiang Xu,Yiwen Liu
出处
期刊:Computer Networks [Elsevier BV]
卷期号:235: 109982-109982 被引量:36
标识
DOI:10.1016/j.comnet.2023.109982
摘要

The Internet of Things (IoT), as the information carrier of the Internet and telecommunications networks, is a new network technology comprising physical entities embedded with electronic components, software and sensors, and characterized by strong complexity and openness. With the massive amount of data, the occurrence of network intrusion is also increasingly frequent, involving industrial control systems, IoT devices, mobile security, cloud services, and telecommunications services. With the diversification and intelligence of cyberattack behaviors, traditional intrusion detection systems (IDSs) face problems—such as insufficient feature extraction and inaccurate model classification—when faced with high-dimensional features and nonlinear massive data. Due to their powerful data representation learning ability, deep learning methods save substantial time in processing high-dimensional and complex intrusion data. On this basis, we propose an intrusion detection model using ResNet, Transformer and BiLSTM (Res-TranBiLSTM) that takes into account both the spatial and temporal features of network traffic. We use the Synthetic Minor Overriding Technique (SMOTE) – Edited Nearest Neighbor (ENN) method to alleviate the degree of data imbalance. In addition, we respectively establish a spatial feature extraction model based on ResNet and a temporal feature extraction model based on Transformer and BiLSTM to extract spatial features and temporal features parallelly. Finally, spatiotemporal features are included to achieve attack detection and classification. Further, simulation experiments are conducted using the public data sets NSL-KDD and CIC-IDS2017. The experiments are implemented using Python programming language and Pytorch framework. The results reveal that the performance of our proposed model is better than that of other models, with accuracy reaching 90.99%, 99.15% and 99.56%, on NSL-KDD dataset, CIC-IDS2017 dataset and MQTTset dataset, respectively. It increased the detection accuracy by about 1%-10% on NSL-KDD dataset and about 0.2%-10% on CIC-IDS2017 dataset, and about 1%-10% on MQTTset dataset. These results demonstrate that this method is effective in constructing and optimizing large-scale IDS in the IoT environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiyin完成签到,获得积分10
刚刚
莫名发布了新的文献求助10
1秒前
492754592发布了新的文献求助10
1秒前
1秒前
沉鱼完成签到,获得积分10
2秒前
2秒前
脑洞疼应助yqwang采纳,获得10
2秒前
江知之完成签到 ,获得积分0
3秒前
大男完成签到,获得积分10
4秒前
xiyin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
顾矜应助酷炫小馒头采纳,获得10
7秒前
iCloud完成签到,获得积分10
7秒前
7秒前
小白发布了新的文献求助30
8秒前
8秒前
8秒前
非言墨语完成签到,获得积分10
8秒前
花椒鱼完成签到 ,获得积分10
9秒前
冰岛计划完成签到,获得积分10
9秒前
yangyangyang完成签到,获得积分0
9秒前
诗和远方完成签到,获得积分20
10秒前
GOODYUE发布了新的文献求助10
10秒前
10秒前
受伤采文完成签到 ,获得积分10
10秒前
JSJ发布了新的文献求助10
10秒前
1111chen完成签到 ,获得积分10
11秒前
打打应助wzz采纳,获得10
11秒前
李小胖发布了新的文献求助20
11秒前
糖葫芦完成签到,获得积分10
11秒前
12秒前
黑炎龙发布了新的文献求助10
12秒前
13秒前
shirely完成签到,获得积分10
13秒前
13秒前
FashionBoy应助小寻采纳,获得10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693