Industrial carbon emission efficiency prediction and carbon emission reduction strategies based on multi-objective particle swarm optimization-backpropagation: A perspective from regional clustering

粒子群优化 聚类分析 还原(数学) 计算机科学 环境科学 环境经济学 数学 人工智能 经济 机器学习 几何学
作者
Hongtao Jiang,Jian Yin,Danqi Wei,Xinyuan Luo,Yi Ding,Ruici Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167692-167692 被引量:57
标识
DOI:10.1016/j.scitotenv.2023.167692
摘要

Against the backdrop of global climate change, industrial carbon emission reduction has become an important pathway to for global low-carbon development. This study constructs a framework of geographic spatial constraints regionalization and multi-objective machine learning to predict future industrial carbon emission efficiency (ICEE) and explore strategies for carbon emission reduction. Firstly, the ICEE of 285 Chinese cities were calculated by the super-efficiency slacks-based measure. Secondly, the cities were classified into four ICEE level regions through the spatially constrained multivariate clustering. Next, the multi-objective particle swarm optimization-BP (MOPSO-BP) model was constructed to predict the future trends of ICEE in the four regions. Finally, the geographical detector and multi-scale geographically weighted regression were employed for exploring driving force and carbon emission reduction strategies in different regions. The results show that most cities had low or medium ICEE, while super efficiency cities were mainly distributed in the east coastal areas. The prediction performance of the MOPSO-BP model for the four regions was better than the ordinary particle swarm optimization-BP and traditional BP model. Except for the Agricultural Production Region, there is considerable room for improving the ICEE of other regions over the next decade. Macroeconomic and microeconomic development have a global effect in promoting regional ICEE improvement, urban construction shows a promoting or inhibiting effect in different regions, and information technology has significant spatial heterogeneity in its influence within each region. The analysis framework developed in the study is a reliable solution for managing and planning ICEE and provides constructive suggestions for future regional low-carbon development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ritage发布了新的文献求助10
1秒前
黎明发布了新的文献求助10
1秒前
不安的尔云完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Zorion发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
旗翼夜发布了新的文献求助30
3秒前
dengy发布了新的文献求助10
3秒前
爆米花应助田建设采纳,获得10
4秒前
5秒前
5秒前
LP完成签到,获得积分10
5秒前
6秒前
小伙子完成签到,获得积分10
6秒前
hopen发布了新的文献求助10
7秒前
欣慰问柳发布了新的文献求助10
7秒前
7秒前
冷板凳发布了新的文献求助10
8秒前
wangyuan发布了新的文献求助10
8秒前
Akim应助jiuyang采纳,获得10
8秒前
皮卡丘完成签到,获得积分20
8秒前
SciGPT应助陶醉的大炮采纳,获得30
9秒前
9秒前
wang发布了新的文献求助10
9秒前
9秒前
完美世界应助Zorion采纳,获得10
9秒前
10秒前
10秒前
Ava应助magie采纳,获得10
10秒前
11秒前
浮游应助凌云采纳,获得10
11秒前
YH发布了新的文献求助30
12秒前
圈圈发布了新的文献求助10
12秒前
瘦瘦怜阳发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351917
求助须知:如何正确求助?哪些是违规求助? 4484853
关于积分的说明 13960712
捐赠科研通 4384534
什么是DOI,文献DOI怎么找? 2409028
邀请新用户注册赠送积分活动 1401521
关于科研通互助平台的介绍 1375057