The Optimization of a Model for Predicting the Remaining Useful Life and Fault Diagnosis of Landing Gear

自回归模型 起落架 预言 断层(地质) 超参数 机身 工程类 预测性维护 可靠性工程 状态维修 计算机科学 人工智能 统计 结构工程 数学 地震学 地质学
作者
Yuan‐Jen Chang,He-Kai Hsu,Tzu-Hsuan Hsu,Tsung-Ti Chen,Po-Wen Hwang
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:10 (11): 963-963 被引量:2
标识
DOI:10.3390/aerospace10110963
摘要

With the development of next-generation airplanes, the complexity of equipment has increased rapidly, and traditional maintenance solutions have become cost-intensive and time-consuming. Therefore, the main objective of this study is to adopt predictive maintenance techniques in daily maintenance in order to reduce manpower, time, and the cost of maintenance, as well as increase aircraft availability. The landing gear system is an important component of an aircraft. Wear and tear on the parts of the landing gear may result in oscillations during take-off and landing rolling and even affect the safety of the fuselage in severe cases. This study acquires vibration signals from the flight data recorder and uses prognostic and health management technology to evaluate the health indicators (HI) of the landing gear. The HI is used to monitor the health status and predict the remaining useful life (RUL). The RUL prediction model is optimized through hyperparameter optimization and using the random search algorithm. Using the RUL prediction model, the health status of the landing gear can be monitored, and adaptive maintenance can be carried out. After the optimization of the RUL prediction model, the root-mean-square errors of the three RUL prediction models, that is, the autoregressive model, Gaussian process regression, and the autoregressive integrated moving average, decreased by 45.69%, 55.18%, and 1.34%, respectively. In addition, the XGBoost algorithm is applied to simultaneously output multiple fault types. This model provides a more realistic representation of the actual conditions under which an aircraft might exhibit multiple faults. With an optimal fault diagnosis model, when an anomaly is detected in the landing gear, the faulty part can be quickly diagnosed, thus enabling faster and more adaptive maintenance. The optimized multi-fault diagnosis model proposed in this study achieves average accuracy, a precision rate, a recall rate, and an F1 score of more than 96.8% for twenty types of faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小黎完成签到,获得积分10
1秒前
智齿怪物一号完成签到,获得积分10
2秒前
充电宝应助阆州采纳,获得10
2秒前
Lam发布了新的文献求助10
2秒前
niguang发布了新的文献求助10
2秒前
超稳健不上头完成签到,获得积分10
2秒前
3秒前
xxl发布了新的文献求助10
3秒前
3秒前
大地完成签到,获得积分10
3秒前
Smile2044完成签到,获得积分10
3秒前
wing完成签到 ,获得积分10
4秒前
Almo完成签到,获得积分10
4秒前
王粒发布了新的文献求助10
4秒前
寻雾启事完成签到,获得积分10
4秒前
w2503发布了新的文献求助10
5秒前
5秒前
JINCHANG完成签到,获得积分10
5秒前
小蘑菇应助文哲采纳,获得10
6秒前
7秒前
記yian完成签到,获得积分20
8秒前
8秒前
rh1006完成签到,获得积分10
9秒前
Lam完成签到,获得积分10
9秒前
昨叶何草完成签到,获得积分10
9秒前
11秒前
12秒前
asdfqwer应助明杰采纳,获得10
13秒前
梦XING完成签到 ,获得积分10
13秒前
caty完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Owen应助Chuncheng采纳,获得10
15秒前
小石同学发布了新的文献求助10
15秒前
15秒前
昨叶何草发布了新的文献求助10
15秒前
荷月初六发布了新的文献求助10
16秒前
上官若男应助niguang采纳,获得10
16秒前
16秒前
HHHHH完成签到,获得积分10
16秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Considering a Biologic: What's a Clinician to Do? Screening and Laboratory Monitoring for Biologic Therapies in the Treatment of Psoriasis 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875777
求助须知:如何正确求助?哪些是违规求助? 3418444
关于积分的说明 10708791
捐赠科研通 3142984
什么是DOI,文献DOI怎么找? 1734131
邀请新用户注册赠送积分活动 836549
科研通“疑难数据库(出版商)”最低求助积分说明 782650