Optimal electric vehicle charging and discharging scheduling using metaheuristic algorithms: V2G approach for cost reduction and grid support

计算机科学 粒子群优化 智能电网 元启发式 电动汽车 车辆到电网 调度(生产过程) 网格 能源管理 算法 工程类 能量(信号处理) 电气工程 运营管理 数学 量子力学 统计 物理 功率(物理) 几何学
作者
Husam I. Shaheen,Ghamgeen Izat Rashed,Bo Yang,Jun Yang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:90: 111816-111816 被引量:59
标识
DOI:10.1016/j.est.2024.111816
摘要

The adoption of Electric Vehicles (EVs) in the transportation sector is expected to grow significantly in the coming few years. While EVs offer numerous benefits, including being environmentally friendly, energy-efficient, low-noise, and can intelligently interact with smart grids through Vehicle-to-Grid (V2G) technology, their widespread adoption will increase energy demand and present challenges to grid load management. Furthermore, EV users face issues such as charging costs, charging time, access to public charging infrastructure, and more. In this article, we propose an approach utilizing metaheuristic algorithms to schedule the charging and discharging activities of EVs while parking, leveraging V2G technology with the goal of reducing the daily costs of EV users and addressing energy demand management challenges in smart grids. Four metaheuristic algorithms inspired by evolutionary and swarm concepts are applied, including Differential Evolution (DE), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Grey Wolf Optimizer (GWO). The results obtained from the proposed approach demonstrate the feasibility of scheduling EVs charging and discharging activities to minimize EV user costs through V2G integration. This, in turn, contributes to enhancing the overall EV user experience and addressing energy demand management issues. Additionally, the results show that WOA outperformed the other algorithms in terms of convergence. This work can be further developed to create an integrated algorithm to balance the interests of both EV users and parking facility operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
毛茅茅猫完成签到,获得积分10
1秒前
1秒前
Ying莹完成签到 ,获得积分10
1秒前
zzz完成签到 ,获得积分10
1秒前
红糖馒头完成签到,获得积分20
1秒前
开心的傲安完成签到,获得积分10
2秒前
彭于彦祖应助科研通管家采纳,获得100
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
qingmoheng应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
jing应助科研通管家采纳,获得50
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Kiritoshi应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
颜倾完成签到,获得积分10
3秒前
壹贰叁应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
东方元语应助科研通管家采纳,获得20
3秒前
科目三应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
壹贰叁应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
东方元语应助科研通管家采纳,获得20
4秒前
无花果应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
wy.he应助科研通管家采纳,获得50
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595936
关于积分的说明 14450632
捐赠科研通 4528886
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653