Physics-Inspired Multimodal Feature Fusion Cascaded Networks for Data-Driven Magnetic Core Loss Modeling

可解释性 特征(语言学) 人工智能 卷积神经网络 人工神经网络 深度学习 计算机科学 循环神经网络 机器学习 物理 语言学 哲学
作者
Youkang Hu,Jing Xu,Jiyao Wang,Wei Xu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 11356-11367
标识
DOI:10.1109/tpel.2024.3403708
摘要

This article proposes a physics-inspired multimodal feature fusion cascaded network (PI-MFF-CN) for data-driven magnetic core loss modeling based on MagNet database. The proposed methodology consists of two cascaded sub-models: the physics-inspired network model and the multimodal feature fusion network model. Firstly, a network model inspired by physics and related micromagnetism, is developed based on the Landau-Lifshitz-Gilbert (LLG) equation. It provides new sequence information (HLLG (t)) for the next cascaded core loss prediction model. This addresses the limitation where H(t) waveforms are unable to participate in the actual prediction process. With embedded physical micromagenetic parameters (A, K, Ms) in the gradient learning process of the neural network, the trained physics-inspired network can be regarded as the inverse model (B(t)→HLLG(t)) of LLG Equation having physical interpretability. Then, in order to address a series of challenges in multimodal information learning, a multimodal feature fusion-based network model is proposed. This approach combines the advantages of convolutional neural network (CNN) and fully connected neural network (FCNN) to learn hybrid sequence-scale data. Specifically, it employs parallel CNN branches for sequence feature mappings, followed by concatenating these mappings with other scalar data into an FCNN for global learning. To validate the effectiveness of the proposed method, this article trains and optimizes the proposed models based on MagNet database, and then a series of experiments including extensive material validation (Ferroxcube-3C90, 3C94 & TDK-N27, N30, N49, N87, etc.) were carried out. A series of experimental outcomes demonstrate that the proposed PI-MFF-CN-based method is generalized and robust in accurately predicting magnetic core losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Luminous应助欧皇采纳,获得30
刚刚
1秒前
LSY28发布了新的文献求助10
2秒前
顺利的曼寒完成签到 ,获得积分10
2秒前
LWQ123发布了新的文献求助10
3秒前
艾瑞克完成签到,获得积分10
3秒前
卡卡发布了新的文献求助10
4秒前
椋鸟应助欧皇采纳,获得10
4秒前
5秒前
Q华发布了新的文献求助10
7秒前
LU41完成签到,获得积分10
7秒前
涵装完成签到 ,获得积分10
7秒前
裴南苇完成签到 ,获得积分10
8秒前
9秒前
11秒前
tt完成签到,获得积分10
11秒前
11秒前
艾瑞克完成签到,获得积分10
12秒前
12秒前
科研通AI5应助zzn采纳,获得10
14秒前
科研通AI5应助LSY28采纳,获得10
14秒前
15秒前
liao完成签到,获得积分10
15秒前
15秒前
Bin_Liu发布了新的文献求助10
16秒前
墨尘发布了新的文献求助30
16秒前
dolabmu发布了新的文献求助10
17秒前
fafa发布了新的文献求助10
17秒前
liberty发布了新的文献求助10
17秒前
yiling完成签到,获得积分20
18秒前
Nereus发布了新的文献求助30
20秒前
21秒前
ljy2015完成签到 ,获得积分10
22秒前
Jasper应助文艺怀蝶采纳,获得10
23秒前
hugh完成签到,获得积分10
24秒前
香蕉觅云应助破坏王采纳,获得10
25秒前
zho应助彩云追月采纳,获得10
25秒前
研友_VZG7GZ应助沉静的时光采纳,获得10
25秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805187
求助须知:如何正确求助?哪些是违规求助? 3350199
关于积分的说明 10347652
捐赠科研通 3066052
什么是DOI,文献DOI怎么找? 1683485
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765153