LEGAN: Addressing Intra-class Imbalance in GAN-based Medical Image Augmentation for Improved Imbalanced Data Classification

离群值 计算机科学 熵(时间箭头) 模式识别(心理学) 人工智能 仿射变换 样品(材料) 上下文图像分类 数据挖掘 机器学习 图像(数学) 数学 物理 量子力学 化学 色谱法 纯数学
作者
Hongwei Ding,Nana Huang,Yaoxin Wu,Xiaohui Cui
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2024.3396853
摘要

Currently, medical image classification is challenged by performance degradation due to imbalanced data. Balancing the data through sample augmentation proves to be an effective solution. However, traditional data augmentation methods and simple linear interpolation fall short in generating more diverse new samples, thereby limiting the enhancement of results with augmented data. Although Generative Adversarial Networks (GAN) models have the potential to generate more diverse samples, current GAN models struggle to effectively address the issue of intra-class mode collapse. In this research, we propose a GAN model structure named LEGAN, based on Local Outlier Factor (LOF) and information entropy, to address this problem. The LEGAN model focuses on resolving mode collapse caused by intra-class imbalances. Firstly, LOF is used to detect sparse and dense sample points in intra-class imbalance, and affine transformations are performed on sparse sample points to enhance the diversity of sample data and features. Then, we train LEGAN jointly using the augmented sparse samples and dense samples to effectively learn the sample distribution in sparse regions, thereby generating more diverse sparse samples. Secondly, we propose a decentralization constraint based on information entropy. This method measures the diversity of generated samples using information entropy during the training process and provides feedback to the generator, encouraging it to optimize towards better diversity. We conducted extensive experiments on three medical datasets, namely BloodMNIST, OrgancMNIST, and PathMNIST, demonstrating that LEGAN can achieve more diverse intra-class sample generation. The quality of the generated images and the classification performance are both significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
123完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
waoller1发布了新的文献求助10
3秒前
waoller1发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
灵巧雨寒发布了新的文献求助30
5秒前
6秒前
HJJHJH发布了新的文献求助10
6秒前
小米完成签到,获得积分10
6秒前
6秒前
7秒前
猪猪发布了新的文献求助10
7秒前
7秒前
Jadechen779完成签到,获得积分10
7秒前
8秒前
8秒前
喽喽发布了新的文献求助10
8秒前
儒雅红牛完成签到,获得积分10
8秒前
玩命的语蝶完成签到,获得积分10
8秒前
管青青发布了新的文献求助30
9秒前
搜集达人应助cici采纳,获得10
10秒前
mmmxxf发布了新的文献求助10
11秒前
12秒前
CipherSage应助三水采纳,获得10
13秒前
13秒前
科研通AI2S应助HJJHJH采纳,获得10
14秒前
CipherSage应助HJJHJH采纳,获得10
14秒前
15秒前
852应助hj采纳,获得10
15秒前
vv完成签到,获得积分10
16秒前
shayla完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297261
求助须知:如何正确求助?哪些是违规求助? 4446159
关于积分的说明 13838669
捐赠科研通 4331314
什么是DOI,文献DOI怎么找? 2377555
邀请新用户注册赠送积分活动 1372811
关于科研通互助平台的介绍 1338355