联轴节(管道)
质子
电解
电解水
膜
材料科学
化学
物理
复合材料
电极
核物理学
物理化学
生物化学
电解质
作者
Jing Ni,Zhaoping Shi,Jingsen Bai,Mingrui Yu,Xiaohui Liu,Kai Li,Tao Gan,Jiong Li,Di Yang,Minhua Shao,Meiling Xiao,Changpeng Liu,Xing Wei
出处
期刊:PubMed
日期:2025-07-25
卷期号:: e202509985-e202509985
标识
DOI:10.1002/anie.202509985
摘要
The imperative to minimize iridium usage in proton exchange membrane water electrolysis (PEMWE) process presents a pivotal challenge for hydrogen economy deployment, while inherent destabilization of iridium (Ir) active sites under corrosive operational conditions, originating from insufficient Ir bonding strength, remains a fundamental barrier. Here, we resolve this dilemma through heterointerface-engineered stabilization, where the strategically constructed Nb-TiO2 rutile/anatase heterophase homojunction stabilizes Ir sites with enhanced orbital overlap and intensified charge transfer. This atomic-scale anchoring mechanism, validated by operando characterization and theoretical calculations, strengthens Ir─Osupport bonding and optimizes *OOH adsorption energetics, thereby enabling concurrent activity-stability improvements. The resultant Ir@IrOx/m-Nb-TiO2 anode achieves exceptional PEMWE performance with ultralow loading (0.27 mgIr cm-2), requiring a low electrolysis voltage of 1.72 V to reach industrial current densities of 2 A cm-2, coupled with unprecedented durability with <1.7% voltage decay over 3000 h. This interface design philosophy establishes a general paradigm for developing active and stable supported electrocatalysts for PEMWE and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI