已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An eight-neuron network for quadruped locomotion with hip-knee joint control

接头(建筑物) 计算机科学 物理医学与康复 控制(管理) 神经元 膝关节 模拟 神经科学 控制理论(社会学) 工程类 人工智能 医学 心理学 结构工程 外科
作者
Yide Liu,Liu Xi-yan,Dongqi Wang,Wei Yang,Shaoxing Qu
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
标识
DOI:10.1177/02783649251364286
摘要

The gait generator, which is capable of producing rhythmic signals for coordinating multiple joints, is an essential component in the quadruped robot locomotion control framework. The biological counterpart of the gait generator is the central pattern generator (abbreviated as CPG), a small neural network consisting of interacting neurons. Inspired by this architecture, researchers have designed artificial neural networks composed of simulated neurons or oscillator equations. Despite the widespread application of these designed CPGs in various robot locomotion controls, some issues remain unaddressed, including: (1) Simplistic network designs often overlook the symmetry between signal and network structure, resulting in fewer gait patterns than those found in nature. (2) Due to minimal architectural consideration, quadruped control CPGs typically consist of only four neurons, which restricts the network’s direct control to leg phases rather than joint coordination. (3) Gait changes are achieved by varying the neuron couplings or the assignment between neurons and legs, rather than through external stimulation. We apply symmetry theory to design an eight-neuron network, composed of Stein neuronal models, capable of achieving five gaits and coordinated control of the hip-knee joints. We validate the signal stability of this network as a gait generator through numerical simulations, which reveal various results and patterns encountered during gait transitions using neuronal stimulation. Based on these findings, we have developed several successful gait transition strategies through neuronal stimulations. Using a commercial quadruped robot model, we demonstrate the feasibility of this network by implementing motion control, gait transitions, and sensory feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8DAv0L发布了新的文献求助10
2秒前
l0000完成签到,获得积分10
3秒前
uian发布了新的文献求助30
3秒前
搜集达人应助欢呼的初彤采纳,获得10
5秒前
5秒前
5秒前
夏紊完成签到 ,获得积分10
6秒前
6秒前
6秒前
8秒前
淡淡碧玉完成签到,获得积分10
8秒前
rena521完成签到,获得积分20
8秒前
万能图书馆应助andrele采纳,获得10
8秒前
9秒前
Dasiy发布了新的文献求助10
9秒前
11秒前
fqf发布了新的文献求助10
11秒前
11秒前
rena521发布了新的文献求助10
12秒前
不安青牛应助轻松向彤采纳,获得10
12秒前
ABCDE发布了新的文献求助10
13秒前
13秒前
所所应助Pannn采纳,获得10
14秒前
研友_8DAv0L完成签到,获得积分10
15秒前
16秒前
Koi应助科研通管家采纳,获得10
17秒前
打工肥仔应助淡淡碧玉采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
18秒前
Dasiy完成签到,获得积分10
19秒前
19秒前
自由的雁完成签到 ,获得积分10
19秒前
LL发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302817
求助须知:如何正确求助?哪些是违规求助? 3826619
关于积分的说明 11978696
捐赠科研通 3467586
什么是DOI,文献DOI怎么找? 1901860
邀请新用户注册赠送积分活动 949534
科研通“疑难数据库(出版商)”最低求助积分说明 851584