DBP-YOLO: A Dynamic Bifurcated-Path Fusion Network for Weld Seam Defect Detection

作者
Chen Zhang,Cheng Xu,Wentao Shan,Zhenhua Han
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 163749-163768
标识
DOI:10.1109/access.2025.3609890
摘要

In order to tackle the issues related to identifying defects on weld seam surfaces, such as the concentrated distribution of defect targets, interference from complex background textures, and the lack of feature differentiation in conditions with low signal-to-noise ratios, this research proposes the Dynamic Bifurcated-Path Fusion Network (DBP-YOLO). This innovative network, grounded in the YOLOv8n architecture, incorporates the C2f-BiFusion (C2f-BiF). This unit greatly improves the ability to represent defect features by employing channel compression techniques, depthwise separable convolutions, and mechanisms for feature gating. Additionally, a Dynamic Perception Pyramid Network (DFFN) is introduced, which establish a cross-level two-way interaction mechanism to achieve multi-scale adaptive feature fusion. A lightweight detection module, low-rank and sparse cross-domain recommendation(LSCD), has been designed to successfully extract local characteristics of small defects while keeping the consumption of computational resources to a minimum. Moreover, we introduce the Focal PIoU loss function, which dynamically adjusts the weights for difficult and easy samples, integrating a joint optimization approach for accurate bounding box regression. This enhances both the convergence efficiency and the accuracy of the model. Experimental findings indicate that DBP-YOLO surpasses the benchmark model (YOLOv8n) with a 3.7% improvement in the mAP@0.5 metric and a reduction in model parameters by $1.21\times 10 ^{6}$ , achieving a detection speed of 62.4 FPS alongside an mAP@0.5 of 83.5% on the Jetson Xavier NX platform. These results satisfy the requirements for real-time detection and offer solid technical support for the advancement of intelligent weld seam detection technologies, the source codes are at https://github.com/xuchengniu/DBP-YOLO
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DD应助哈哈哈采纳,获得10
1秒前
小亮发布了新的文献求助20
2秒前
暖暖发布了新的文献求助10
2秒前
田様应助老实的静蕾采纳,获得10
3秒前
张emo发布了新的文献求助10
5秒前
5秒前
吴慧琼发布了新的文献求助10
6秒前
7秒前
哪吒之魔童闹海完成签到,获得积分10
8秒前
结实星星发布了新的文献求助10
10秒前
NGC完成签到,获得积分10
11秒前
Xuemin发布了新的文献求助10
13秒前
刻苦黎云完成签到,获得积分10
13秒前
蓝天发布了新的文献求助10
13秒前
科研通AI6应助如意闭月采纳,获得10
13秒前
香蕉觅云应助如意闭月采纳,获得10
14秒前
科研通AI6应助如意闭月采纳,获得10
14秒前
酷波er应助不安的丹珍采纳,获得10
14秒前
无痕发布了新的文献求助10
15秒前
喜喜完成签到,获得积分10
16秒前
xiyo完成签到,获得积分20
17秒前
19秒前
20秒前
梦的光点完成签到,获得积分10
20秒前
杏子完成签到,获得积分10
21秒前
TeeteePor发布了新的文献求助10
23秒前
23秒前
24秒前
结实星星发布了新的文献求助10
25秒前
香蕉曼寒完成签到,获得积分20
25秒前
无死何能生新颜完成签到,获得积分10
26秒前
Ellis发布了新的文献求助10
26秒前
零度蓝莓完成签到,获得积分10
28秒前
潘神发布了新的文献求助10
29秒前
zjcbk985发布了新的文献求助10
29秒前
SciGPT应助吴慧琼采纳,获得10
30秒前
30秒前
30秒前
hhh完成签到,获得积分10
30秒前
热心的血茗完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565910
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693820
捐赠科研通 4592971
什么是DOI,文献DOI怎么找? 2519822
邀请新用户注册赠送积分活动 1492187
关于科研通互助平台的介绍 1463382