锂(药物)
镍
金属锂
催化作用
金属
材料科学
无机化学
化学
冶金
电极
有机化学
阳极
医学
物理化学
内科学
作者
Huasen Shen,Zhaohuai Li,Jiantao Li,Qiu He,Mengjun Li,Yunfeng Tian,Guoning Wu,Yan Zhao,Xuanxuan Zhang,Jingjing Xiao,Khalil Amine,Yuyu Li,Ming Xie,Jun Lü
标识
DOI:10.1038/s41467-025-60609-4
摘要
The growth of lithium (Li) dendrites and the accumulation of dead Li (i.e., Li metal regions which are electronically disconnected from the current collector) significantly undermine the safety and performance of Li metal batteries. This study employs kilogram-scale atomic layer deposition technology to construct zinc oxide with a preferential (002) crystal orientation, which homogeneously forms on commercial carbon nanotube papers. Our approach emphasizes the importance of achieving a moderate Li adsorption energy and low Li migration energy barriers to suppress Li dendrite growth. In this work, we introduce the concept of "catalytic" effect for dead Li reconversion, as validated through time-of-flight secondary ion mass spectrometry, leading to a Li plating/stripping efficiency of 99.89%. The Ah-level Li metal pouch cells with high-nickel positive electrodes achieve a specific energy of 380 Wh kg-1 (based on the mass of the whole pouch cell) and demonstrate stable cycling under demanding conditions. Analysis of the cycled pouch cells confirms the structural integrity and provides insights into the mechanism of the dead Li "catalytic" conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI