SRM 6/12 M-45 Motors Modeling with Bidirectional Gated Recurrent Unit Prediction System for Enhanced Torque and Speed in Electric Vehicles

扭矩 汽车工程 计算机科学 控制工程 控制理论(社会学) 材料科学 工程类 物理 人工智能 控制(管理) 热力学
作者
Lata S. Dufare,Makarand M. Lokhande,B. S. Umre
出处
期刊:Journal of Multiscale Modelling [World Scientific]
卷期号:16 (01n02)
标识
DOI:10.1142/s1756973725500052
摘要

Switched Reluctance Motor (SRM) is a type of reluctance motor where power is supplied to the stator windings rather than the rotor, removing the requirement for a commutator and streamlining the mechanical construction. Due to the doubly salient construction of SRMs, the rotor and stator both have prominent poles. SRMs include a bulky construction due to their doubly salient design and limited slot fill factor, which can reduce overall efficiency. Additionally, the rotor’s complex design may lead to manufacturing challenges and increased mechanical wear over time. To overcome these impacts, a newly developed SRM 6/12 M-45 design is presented in this research with the integration of AI to predict motor performance at any period. Initially 3[Formula: see text]SRM 6/12 M-45 model was developed, in which the rotor and stator are made from Cold Rolled Non-Oriented (CRNO) silicon steel, which provides high permeability and low core loss. The designed conical shape motor model undergoes Finite Element Method (FEM) analysis to evaluate parameters such as flux linkage, heat, power, efficiency, and torque ripple. A real-time dataset was generated from the FEM analysis, utilizing varied power levels, which was subsequently used to train the Bidirectional Gated Recurrent Unit (BiGRU) prediction model. The BiGRU analyzes the input data of flux linkage, power rating, heat, and frequency to predict the output of energy utilization ratio, torque, and speed. As a result, the SRM motor demonstrates a power loss of 2.05[Formula: see text]W and a torque output of 33.069[Formula: see text]Nm. Additionally, the energy density value is 2830e[Formula: see text]004, the operating temperature is 1.0000e−009, and the surface charge density value is 1.7527e[Formula: see text]013 with the accuracy of 96% and precision of 96.84%. This integration of advanced materials, design techniques, and predictive modeling optimizes the SRM’s efficiency and reliability in Electric Vehicle (EV) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知然完成签到,获得积分10
刚刚
星辰大海应助JJLU丶采纳,获得10
刚刚
边疆完成签到,获得积分20
1秒前
搜集达人应助Cynthia采纳,获得10
1秒前
徵xi发布了新的文献求助10
1秒前
Solar energy完成签到,获得积分10
1秒前
xuerkk完成签到,获得积分10
1秒前
3秒前
3秒前
舒适诗珊关注了科研通微信公众号
3秒前
3秒前
karyoter发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
MA完成签到,获得积分10
3秒前
MatheusYoung发布了新的文献求助10
3秒前
北觅发布了新的文献求助10
4秒前
pifu发布了新的文献求助10
4秒前
4秒前
4秒前
汤圆1发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
OYZY发布了新的文献求助20
5秒前
XTechMan发布了新的文献求助10
5秒前
同福发布了新的文献求助10
5秒前
Jasper应助刘文辉采纳,获得10
5秒前
6秒前
6秒前
锦程完成签到,获得积分10
6秒前
田様应助雪糕采纳,获得10
7秒前
隐形曼青应助牛大佳采纳,获得10
7秒前
123by发布了新的文献求助10
7秒前
7秒前
小二郎应助XIN_0116采纳,获得10
7秒前
想喝奶茶发布了新的文献求助10
8秒前
duran发布了新的文献求助10
9秒前
CodeCraft应助dichloro采纳,获得10
9秒前
李健的小迷弟应助pifu采纳,获得10
9秒前
冷酷夏真完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366