This study investigated the physicochemical properties of Camellia oleifera husks collected from three regions of Jiangxi Province (Ganzhou—GZ, Yichun—YC, and Jiujiang—JJ) and extracted tea saponins via microwave-assisted solvent extraction (MASE), aiming to provide a theoretical basis for the high-value utilization of this agricultural by-product. The husks from YC were rich in bioactive compounds such as tea saponins (16.29 ± 0.02%), with lower cellulose (21.05 ± 1.05%) and lignin (12.48 ± 1.14%) contents and higher hemicellulose (27.40 ± 0.80%) content. The husks from JJ exhibited abundant porosity and a larger specific surface area (40–60 mesh, 4.15 ± 0.04 m2/g). Single-factor extraction experiments indicated that the microstructure and chemical composition of Camellia oleifera husks significantly affected the extraction efficiency of saponins, tannins, and flavonoids. The optimal extraction conditions for tea saponins were established using Box–Behnken response surface methodology, with the liquid-to-solid ratio identified as the most critical factor. Optimal conditions for GZ husks were a liquid-to-solid ratio of 46.75 mL/g, ethanol concentration of 35.5%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 7.49 ± 0.01%. Optimal conditions for YC husks were a liquid-to-solid ratio of 50.55 mL/g, ethanol concentration of 40.13%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 16.29 ± 0.02%. Optimal conditions for JJ husks were a liquid-to-solid ratio of 47.44 mL/g, ethanol concentration of 37.28%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 9.39 ± 0.02%. The study provides important scientific evidence for understanding the structure–function relationship of Camellia oleifera husks and offers practical guidance for developing sustainable industrial processes to convert agricultural by-products into high-value bioactive compounds, thereby promoting resource recycling and economic benefits in the Camellia oleifera industry.