清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Review of Unlabeled and Imbalanced Data Challenges in Machine Learning: Strategies and Solutions

计算机科学 人工智能 机器学习 数据科学
作者
M. S. Neethu,S. S. Vinod Chandra
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:15 (3)
标识
DOI:10.1002/widm.70043
摘要

ABSTRACT Machine learning models often face significant challenges while dealing with imbalanced and unlabeled datasets. Addressing these issues is resource‐intensive, requiring comprehensive strategies to navigate their individual complexities and compounded effects. This article explores the dual challenges imposed by class imbalance and the absence of labeled data, along with their individual complexities and combined effects on the performance of the model. This study addresses approaches for handling the imbalance problem in datasets, such as data‐level, algorithm‐level, and deep learning methods. The survey also examines hybrid methodologies that integrate these strategies to tackle the compounded issues effectively. Emerging techniques like Bayesian graph‐based learning, uncertainty‐guided semi‐supervised learning, and self‐supervised approaches are also considered for their potential to address the scalability, noise filtering, and generalization challenges associated with imbalanced and unlabeled datasets. It identified persistent gaps, such as the lack of robust evaluation metrics and the underutilization of dynamic feature extraction techniques, suggesting solutions with advanced machine learning approaches. Additionally, the need for adaptive techniques, such as dynamic class weighting and data‐driven filtering mechanisms, is highlighted to address limitations and improve the scalability of machine learning models in real‐world applications. This article is categorized under: Technologies > Machine Learning Technologies > Classification Technologies > Artificial Intelligence
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助hhhhhw采纳,获得10
6秒前
hhhhhw完成签到,获得积分10
17秒前
黑摄会阿Fay完成签到,获得积分10
18秒前
33秒前
53秒前
56秒前
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
拼搏的帽子完成签到 ,获得积分10
2分钟前
hhhhhw发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
lalalapa666完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
Kevin发布了新的文献求助30
4分钟前
Mong那粒沙完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935601
求助须知:如何正确求助?哪些是违规求助? 4202889
关于积分的说明 13059030
捐赠科研通 3978620
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107508