Accurate estimation of aboveground biomass in Moso bamboo (Phyllostachys edulis) forests under Pantana phyllostachysae Chao stress using UAV multispectral remote sensing and self‐establish allometric equations

生物量(生态学) 毛竹 竹子 有害生物分析 异速滴定 均方误差 树木异速生长 病虫害综合治理 生物 生态学 环境科学 农林复合经营 数学 统计 植物 生物量分配
作者
Anqi He,Zhanghua Xu,Guantong Li,Lingyan Chen,Huafeng Zhang,Bin Li,Yifan Li,Xiaoyu Guo,Zenglu Li,Fengying Guan
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.70018
摘要

Abstract BACKGROUND Moso bamboo ( Phyllostachys edulis ) plays a pivotal role in the global carbon cycle because of its rapid growth and significant ecological benefits. Accurate estimation of its aboveground biomass (AGB) is therefore essential for effective carbon management. However, the influence of its primary leaf‐feeding pest, Pantana phyllostachysae Chao ( P. phyllostachysae ), on AGB remains poorly understood, potentially compromising estimation accuracy. This study aims to develop allometric equations and integrate them with machine learning algorithms to accurately estimate the AGB of Moso bamboo forests under varying levels of pest stress. RESULTS Allometric equations exhibited strong estimation performance across all pest infestation levels, with R 2 values exceeding 0.93, root mean square error (RMSE) values below 0.66 kg, and mean absolute error (MAE) values under 0.51 kg. Among the machine learning approaches evaluated, the Extreme Gradient Boosting (XGBoost) algorithm demonstrated superior performance, yielding an R 2 of 0.8593, RMSE of 0.5176 kg, and MAE of 0.4313 kg. A clear negative correlation was identified between the severity of P. phyllostachysae infestation and AGB, with biomass values decreasing progressively from healthy to severely infested stands. CONCLUSION Incorporating pest factors into AGB estimation models significantly enhances model accuracy and captures the nuanced effects of pest stress on biomass accumulation. This integration improves model generalizability and ecological relevance, offering valuable insights for sustainable forest management and carbon accounting. The findings highlight the importance of explicitly considering pest dynamics in biomass modeling and carbon management strategies, laying a robust foundation for future research on pest–biomass interactions in forest ecosystems. © 2025 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
余怜烟完成签到,获得积分10
3秒前
renxiang发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
liusu完成签到,获得积分10
7秒前
胡先生完成签到,获得积分10
8秒前
8秒前
9秒前
留白留白发布了新的文献求助10
10秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
清久发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
李健应助胡先生采纳,获得10
12秒前
迁移学习发布了新的文献求助10
13秒前
啦啦啦发布了新的文献求助30
14秒前
美好水池发布了新的文献求助50
14秒前
15秒前
山海完成签到,获得积分10
15秒前
cc完成签到,获得积分10
16秒前
16秒前
orixero应助清爽的碧空采纳,获得10
17秒前
17秒前
lunan关注了科研通微信公众号
17秒前
科研通AI5应助Suagy采纳,获得30
17秒前
猪猪hero发布了新的文献求助10
19秒前
迁移学习完成签到,获得积分10
19秒前
123额应助深秋远塞采纳,获得20
19秒前
吴俏俏完成签到,获得积分10
20秒前
20秒前
小蘑菇应助啦啦啦采纳,获得10
20秒前
思源应助花粉过敏采纳,获得10
21秒前
zhaoxiao完成签到 ,获得积分10
21秒前
FL完成签到,获得积分10
22秒前
豆豆完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691373
求助须知:如何正确求助?哪些是违规求助? 4062915
关于积分的说明 12562638
捐赠科研通 3760869
什么是DOI,文献DOI怎么找? 2077090
邀请新用户注册赠送积分活动 1105743
科研通“疑难数据库(出版商)”最低求助积分说明 984342