亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer Learning Based Deep Learning Approach for Knee Osteoarthritis Grading Using Modified XceptionNet Architecture

学习迁移 骨关节炎 计算机科学 分级(工程) 深度学习 人工智能 医学 机器学习 病理 生物 替代医学 生态学
作者
H K Shashikala,M Suresh
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (222)
标识
DOI:10.3791/68720
摘要

Knee osteoarthritis (KOA) affects millions of individuals worldwide and has no known curative treatment, making it a serious global health concern. The management of its development depends on early discovery, and X-ray imaging is a fundamental diagnostic technique. However, due to variations in radiologists' levels of experience, manual X-ray interpretation increases variability and possible inaccuracies. Recent advances in machine learning and deep learning techniques have sparked the creation of automated systems for the radiological identification of osteoarthritis in the knee. However, for early-stage detection, obtaining greater prediction accuracy is still crucial. By utilizing the insights gathered from a bigger dataset, models trained on smaller, domain-specific datasets perform better through the use of transfer learning. Due to its depth and effectiveness, XceptionNet is especially well-suited for jobs involving the interpretation of medical images. In contrast to previous research, this method efficiently addresses dataset imbalance by using class balancing approaches, integrating a customized preprocessing pipeline, and adding customized architectural improvements to XceptionNet, which improves early-stage KOA identification. With the use of these state-of-the-art methods, The suggested approach shows potential in correctly identifying osteoarthritis from radiographic images of the knee, attaining 97% prediction accuracy, 97.8% precision, 97.6% recall, and 97.6% F1-measure. Additionally, the generated model showed 95.94% Cohen's kappa value, which indicates good agreement. The study supports further efforts to develop trustworthy, automated disease detection technology, which improves patient outcomes and facilitates more efficient healthcare delivery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅海秋完成签到,获得积分10
15秒前
852应助科研通管家采纳,获得10
17秒前
小榕树完成签到,获得积分10
41秒前
1分钟前
1分钟前
1分钟前
Orange应助cometx采纳,获得10
1分钟前
zcxxxxxxx完成签到,获得积分10
1分钟前
1分钟前
GGGrigor完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
henrychen发布了新的文献求助10
2分钟前
没头脑发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Alisha完成签到,获得积分10
3分钟前
科研通AI5应助秋日思语采纳,获得30
3分钟前
3分钟前
没头脑完成签到,获得积分10
3分钟前
3分钟前
嘻嘻完成签到,获得积分10
3分钟前
4分钟前
Ecokarster完成签到,获得积分10
4分钟前
sino-ft发布了新的文献求助10
4分钟前
4分钟前
zhou完成签到,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
zhou发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
lalalatiancai发布了新的文献求助10
5分钟前
花落无声完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173857
求助须知:如何正确求助?哪些是违规求助? 4363512
关于积分的说明 13585594
捐赠科研通 4212109
什么是DOI,文献DOI怎么找? 2310209
邀请新用户注册赠送积分活动 1309293
关于科研通互助平台的介绍 1256701