Deep Mining of Novel Acylated Polyamines by Integrated Prior-Knowledge-Guided Prediction and Chemical Isotope Labeling-Based Metabolomics

化学 代谢组学 计算生物学 色谱法 生物
作者
Yiran Zhang,Qinwen Xiao,Xinyao Zhou,Yan Li,Shilin Wang,Xx Zhou,Rung Tsung Chen,Ying Zhang,Meiyu Gao,Fengguo Xu,Pei Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (29): 15597-15607
标识
DOI:10.1021/acs.analchem.4c06974
摘要

Acylated polyamines (acyl-PAs) are gaining significant attention due to their involvement in various diseases. However, their annotation and quantification remain challenging, as robust analytical methods are lacking, with only a few acyl-PAs characterized to date. In this study, we integrated prior-knowledge-guided prediction with chemical isotope labeling-based metabolomics to identify novel acyl-PAs. An in silico library of 267 predicted acyl-PAs was constructed. Using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and paired labeling reagents (dansyl chloride and d6-dansyl chloride), we successfully annotated 41 acyl-PAs across diverse biological samples, 38 of which were novel. Representative acyl-PAs were synthesized for the validation of annotation. Furthermore, we developed a pseudotargeted metabolomic approach for the semiquantification of acyl-PAs in a mouse model of ulcerative colitis (UC), revealing significant changes in 13 acyl-PAs in the feces or colon samples from UC mice. Notably, an antibiotic-treated mouse model revealed that gut microbiota significantly influenced the abundance of acyl-PAs. This study introduces a comprehensive workflow for discovering novel metabolites and provides valuable insights into the roles of acyl-PAs in health and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助zxe采纳,获得10
1秒前
丘比特应助kyf采纳,获得10
1秒前
2秒前
2秒前
苏素肃发布了新的文献求助10
3秒前
吉他平方发布了新的文献求助10
3秒前
充电宝应助Awkward采纳,获得10
4秒前
科研通AI6应助尊敬的芷卉采纳,获得10
4秒前
4秒前
壮观以松应助尊敬的芷卉采纳,获得10
4秒前
彭于晏应助尊敬的芷卉采纳,获得10
4秒前
英姑应助尊敬的芷卉采纳,获得10
4秒前
所所应助尊敬的芷卉采纳,获得10
4秒前
科研通AI6应助尊敬的芷卉采纳,获得10
4秒前
酷波er应助尊敬的芷卉采纳,获得10
4秒前
4秒前
赤壁应助尊敬的芷卉采纳,获得10
4秒前
orixero应助尊敬的芷卉采纳,获得10
4秒前
官尔完成签到 ,获得积分10
4秒前
韩雪茹发布了新的文献求助30
6秒前
rixinsu发布了新的文献求助10
6秒前
cjh发布了新的文献求助10
7秒前
8秒前
9秒前
隐形曼青应助晓晓鹤采纳,获得10
10秒前
科研通AI6应助san采纳,获得10
11秒前
走过的风完成签到,获得积分10
11秒前
wulaoshuai发布了新的文献求助10
11秒前
朴素采柳发布了新的文献求助30
12秒前
12秒前
ddc_0819发布了新的文献求助30
12秒前
14秒前
Lucas应助冷傲之玉采纳,获得10
14秒前
享受仅有的拥有关注了科研通微信公众号
15秒前
田様应助苏素肃采纳,获得10
15秒前
16秒前
zxe发布了新的文献求助10
16秒前
成懂事长发布了新的文献求助10
16秒前
nicelily发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265295
求助须知:如何正确求助?哪些是违规求助? 4425380
关于积分的说明 13776294
捐赠科研通 4300800
什么是DOI,文献DOI怎么找? 2359947
邀请新用户注册赠送积分活动 1355964
关于科研通互助平台的介绍 1317291