Automatic offline-capable smartphone paper-based microfluidic device for efficient biomarker detection of Alzheimer's disease

化学 微流控 生物标志物 纳米技术 生物化学 材料科学
作者
Sixuan Duan,Tianyu Cai,Fuyuan Liu,Yifan Li,Hang Yuan,Wenwen Yuan,Kaizhu Huang,Kai F. Hoettges,Min Chen,Eng Gee Lim,Chun Zhao,Pengfei Song
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1308: 342575-342575 被引量:14
标识
DOI:10.1016/j.aca.2024.342575
摘要

Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient disease detection. This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich c-ELISA for detecting the β-amyloid peptide 1–42 (Aβ 1–42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aβ 1–42, particularly in areas with low resources and limited communication infrastructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGGG发布了新的文献求助10
刚刚
无糖加冰发布了新的文献求助10
刚刚
DX120210165发布了新的文献求助10
刚刚
糖糖完成签到 ,获得积分10
1秒前
gy完成签到,获得积分10
1秒前
追寻盈发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
任震宇完成签到,获得积分10
4秒前
科目三应助zhouzhou采纳,获得20
6秒前
6秒前
SciGPT应助大力世界采纳,获得10
7秒前
Jasper应助婧婧婧采纳,获得10
8秒前
柒柒完成签到,获得积分10
8秒前
苗条幻嫣发布了新的文献求助10
8秒前
胡佳文应助巫马尔槐采纳,获得10
8秒前
瓦尔迪发布了新的文献求助200
8秒前
鱼乐乐完成签到,获得积分10
8秒前
9秒前
husi发布了新的文献求助10
10秒前
12366666完成签到,获得积分10
10秒前
亦尘发布了新的文献求助10
10秒前
11秒前
11秒前
Jasper应助XYZ采纳,获得10
12秒前
负责绿兰完成签到,获得积分10
12秒前
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
19秒前
Ava应助殷勤的天亦采纳,获得10
20秒前
DX120210165完成签到,获得积分10
20秒前
lanxinyue应助Jia小哥采纳,获得10
20秒前
明亮三娘完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649707
求助须知:如何正确求助?哪些是违规求助? 4779165
关于积分的说明 15050119
捐赠科研通 4808741
什么是DOI,文献DOI怎么找? 2571782
邀请新用户注册赠送积分活动 1528105
关于科研通互助平台的介绍 1486871