An Intelligent Big Data Security Framework Based on AEFS-KENN Algorithms for the Detection of Cyber-Attacks from Smart Grid Systems

计算机科学 大数据 智能电网 算法 数据挖掘 工程类 电气工程
作者
Sankaramoorthy Muthubalaji,Naresh Kumar Muniyaraj,Sarvade Pedda Venkata Subba Rao,T. Kavitha,P. Rama Mohan,Thangam Somasundaram,Yousef Farhaoui
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (2): 399-418 被引量:32
标识
DOI:10.26599/bdma.2023.9020022
摘要

Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid, which also supports to obtain a variety of technological, social, and financial benefits. There is an unprecedented amount of heterogeneous big data as a consequence of the growth of power grid technologies, along with data processing and advanced tools. The main obstacles in turning the heterogeneous large dataset into useful results are computational burden and information security. The original contribution of this paper is to develop a new big data framework for detecting various intrusions from the smart grid systems with the use of AI mechanisms. Here, an AdaBelief Exponential Feature Selection (AEFS) technique is used to efficiently handle the input huge datasets from the smart grid for boosting security. Then, a Kernel based Extreme Neural Network (KENN) technique is used to anticipate security vulnerabilities more effectively. The Polar Bear Optimization (PBO) algorithm is used to efficiently determine the parameters for the estimate of radial basis function. Moreover, several types of smart grid network datasets are employed during analysis in order to examine the outcomes and efficiency of the proposed AdaBelief Exponential Feature Selection- Kernel based Extreme Neural Network (AEFS-KENN) big data security framework. The results reveal that the accuracy of proposed AEFS-KENN is increased up to 99.5% with precision and AUC of 99% for all smart grid big datasets used in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你学习了吗我学不了一点完成签到,获得积分10
1秒前
李玲玲发布了新的文献求助10
1秒前
小万发布了新的文献求助10
2秒前
4秒前
欢喜平凡发布了新的文献求助10
4秒前
田様应助亦玉采纳,获得10
5秒前
大模型应助xiaobei采纳,获得10
6秒前
8秒前
8秒前
10秒前
善学以致用应助韩达大采纳,获得10
12秒前
t忒对发布了新的文献求助10
13秒前
13秒前
xiaobadou发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
gu发布了新的文献求助30
17秒前
杨阳洋发布了新的文献求助10
17秒前
xiaobei发布了新的文献求助10
18秒前
18秒前
xinxinxin91发布了新的文献求助10
18秒前
20秒前
王士钰完成签到,获得积分10
20秒前
欢喜平凡关注了科研通微信公众号
20秒前
20秒前
有魅力的傲白完成签到,获得积分10
20秒前
he发布了新的文献求助10
20秒前
小万完成签到,获得积分20
21秒前
YY土豆侠完成签到,获得积分10
22秒前
郑晓芳关注了科研通微信公众号
23秒前
浮游应助第十一话采纳,获得10
24秒前
科研通AI5应助积极的振家采纳,获得10
24秒前
lejunia发布了新的文献求助10
24秒前
和谐熠彤完成签到,获得积分10
24秒前
24秒前
25秒前
温暖的德地完成签到,获得积分10
25秒前
李爱国应助Siri不理我采纳,获得10
25秒前
东方烟完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035356
求助须知:如何正确求助?哪些是违规求助? 4268471
关于积分的说明 13307103
捐赠科研通 4079070
什么是DOI,文献DOI怎么找? 2231204
邀请新用户注册赠送积分活动 1239511
关于科研通互助平台的介绍 1165307