Development of machine learning-based shelf-life prediction models for multiple marine fish species and construction of a real-time prediction platform

电子鼻 预测建模 保质期 计算机科学 环境科学 机器学习 工程类 人工智能 渔业 生物 机械工程
作者
Fangchao Cui,Shiwei Zheng,Dangfeng Wang,Likun Ren,Yuqiong Meng,Rui Ma,Shulin Wang,Xuepeng Li,Tingting Li,Jianrong Li
出处
期刊:Food Chemistry [Elsevier BV]
卷期号:450: 139230-139230 被引量:11
标识
DOI:10.1016/j.foodchem.2024.139230
摘要

At least 10 million tons of seafood products are spoiled or damaged during transportation or storage every year worldwide. Monitoring the freshness of seafood in real time has become especially important. In this study, four machine learning algorithms were used for the first time to develop a multi-objective model that can simultaneously predict the shelf-life of five marine fish species at multiple storage temperatures using 14 features such as species, temperature, total viable count, K-value, total volatile basic‑nitrogen, sensory and E-nose-GC-Ms/Ms. as inputs. Among them, the radial basis function model performed the best, and the absolute errors of all test samples were <0.5. With the optimal model as the base layer, a real-time prediction platform was developed to meet the needs of practical applications. This study successfully realized multi-objective real-time prediction with accurate prediction results, providing scientific basis and technical support for food safety and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助眯眯眼的世界采纳,获得10
1秒前
彭于晏应助lucas采纳,获得10
1秒前
2秒前
NexusExplorer应助寻找采纳,获得10
2秒前
望除举报想跟博哥打篮球求助涉嫌违规
3秒前
3秒前
alano发布了新的文献求助10
4秒前
思源应助mr采纳,获得10
4秒前
追寻羿完成签到 ,获得积分10
5秒前
YS发布了新的文献求助10
7秒前
8秒前
AAA电池批发顾总完成签到,获得积分10
9秒前
残幻应助jlwang采纳,获得10
10秒前
10秒前
陈强发布了新的文献求助10
11秒前
chen发布了新的文献求助10
13秒前
我是老大应助迷你的颖采纳,获得10
13秒前
万元帅完成签到 ,获得积分10
15秒前
16秒前
yj91完成签到 ,获得积分10
17秒前
Jaime发布了新的文献求助10
17秒前
顾矜应助呼呼兔采纳,获得10
18秒前
lin完成签到,获得积分10
19秒前
chen完成签到,获得积分10
21秒前
Alex给asdf的求助进行了留言
21秒前
zhangsudi发布了新的文献求助30
21秒前
YS完成签到,获得积分10
21秒前
年轻的书本完成签到,获得积分10
22秒前
小鸣完成签到 ,获得积分10
23秒前
24秒前
橘猫完成签到,获得积分10
24秒前
庾稀完成签到,获得积分10
24秒前
康康完成签到,获得积分10
25秒前
26秒前
28秒前
28秒前
zhangsudi完成签到,获得积分10
30秒前
泡沫发布了新的文献求助10
30秒前
GGZ发布了新的文献求助10
31秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798163
求助须知:如何正确求助?哪些是违规求助? 3343566
关于积分的说明 10316840
捐赠科研通 3060296
什么是DOI,文献DOI怎么找? 1679457
邀请新用户注册赠送积分活动 806599
科研通“疑难数据库(出版商)”最低求助积分说明 763282