锂(药物)
扩散
磷化物
离子
各向异性
锗
材料科学
石墨
Crystal(编程语言)
之字形的
结晶学
锑
插层(化学)
化学物理
化学
物理
光学
热力学
光电子学
无机化学
硅
冶金
有机化学
内分泌学
程序设计语言
镍
医学
复合材料
计算机科学
数学
几何学
作者
Cheng Zeng,Jiajun Chen,Hui Yang,Ankun Yang,Can Cui,Yue Zhang,Xiaogang Li,Siwei Gui,Yaqing Wei,Xinliang Feng,Xiang Xu,Ping Xiao,Jianing Liang,Tianyou Zhai,Yi Cui,Huiqiao Li
出处
期刊:Matter
[Elsevier BV]
日期:2022-08-24
卷期号:5 (11): 4015-4028
被引量:10
标识
DOI:10.1016/j.matt.2022.08.003
摘要
Summary
Ion insertion in host layered materials is the foundation of energy storage mechanism of commercial lithium-ion batteries. Contrary to general view that small lithium (Li) diffuses freely between large interlayer, here, we in situ visualize Li diffusion pathways into the layered germanium phosphide (GeP) crystal flake along different directions via a microbattery device. Surprisingly, a more preferential Li diffusion pathway along zigzag [010] direction than armchair [102] direction is observed, demonstrating a strong in-plane diffusion anisotropy up to 7.0. And an interlayered Li diffusion coefficient of 3.4 × 10−7 cm2 s−1 is obtained for GeP flake, over 1,000 times faster than that measured for graphite flake (2.4 × 10−11 cm2 s−1), suggesting a high potential of GeP as an attractive fast-charging material. The visualizing and quantitative strategy for the intrinsic diffusion process provides solid and scientific guidance on high-through material screening for fast-charging batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI