Automatic localization of target point for subthalamic nucleus‐deep brain stimulation via hierarchical attention‐UNet based MRI segmentation

脑深部刺激 分割 丘脑底核 人工智能 计算机科学 深度学习 图像分割 磁共振成像 背景(考古学) 模式识别(心理学) 计算机视觉 帕金森病 医学 放射科 病理 古生物学 生物 疾病
作者
Liu Rui‐Qiang,Xiaodong Cai,Tu Ren‐Zhe,Caizi Li,Yu‐Ling Wei,Doudou Zhang,Xiao Lin‐Xia,Weixin Si
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 50-60 被引量:2
标识
DOI:10.1002/mp.15956
摘要

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for patients with advanced Parkinson's disease, the outcome of this surgery is highly dependent on the accurate placement of the electrode in the optimal target of STN.In this study, we aim to develop a target localization pipeline for DBS surgery, considering that the heart of this matter is to achieve the STN and red nucleus segmentation, a deep learning-based automatic segmentation approach is proposed to tackle this issue.To address the problems of ambiguous boundaries and variable shape of the segmentation targets, the hierarchical attention mechanism with two different attention strategies is integrated into an encoder-decoder network for mining both semantics and fine-grained details for segmentation. The hierarchical attention mechanism is utilized to suppress irrelevant regions in magnetic resonance (MR) images while build long-range dependency among segmentation targets. Specifically, the attention gate (AG) is integrated into low-level features to suppress irrelevant regions in an input image while highlighting the salient features useful for segmentation. Besides, the self-attention involved in the transformer block is integrated into high-level features to model the global context. Ninety-nine brain magnetic resonance imaging (MRI) studies were collected from 99 patients with Parkinson's disease undergoing STN-DBS surgery, among which 80 samples were randomly selected as the training datasets for deep learning training, and ground truths (segmentation masks) were manually generated by radiologists.We applied five-fold cross-validation on these data to train our model, the mean results on 19 test samples are used to conduct the comparison experiments, the Dice similarity coefficient (DSC), Jaccard (JA), sensitivity (SEN), and HD95 of the segmentation for STN are 88.20%, 80.32%, 90.13%, and 1.14 mm, respectively, outperforming the state-of-the-art STN segmentation method with 2.82%, 4.52%, 2.56%, and 0.02 mm respectively. The source code and trained models of this work have been released in the URL below: https://github.com/liuruiqiang/HAUNet/tree/master.In this study, we demonstrate the effectiveness of the hierarchical attention mechanism for building global dependency on high-level semantic features and enhancing the fine-grained details on low-level features, the experimental results show that our method has considerable superiority for STN and red nucleus segmentation, which can provide accurate target localization for STN-DBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助折小婷采纳,获得10
刚刚
刚刚
1秒前
RR发布了新的文献求助10
1秒前
miao发布了新的文献求助10
1秒前
FashionBoy应助霸气安蕾采纳,获得10
1秒前
1秒前
1秒前
乐乐应助zasideler采纳,获得10
2秒前
顾矜应助莫里采纳,获得10
2秒前
3秒前
科研通AI5应助繁荣的豁采纳,获得10
3秒前
3秒前
勤劳的筝发布了新的文献求助10
3秒前
学术z完成签到,获得积分10
3秒前
江大橘完成签到,获得积分10
4秒前
4秒前
Rebeccaiscute完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
Lareina发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
5秒前
zjkzh完成签到 ,获得积分10
5秒前
Fern完成签到,获得积分10
6秒前
谷曼婷完成签到,获得积分10
6秒前
麦哎关注了科研通微信公众号
6秒前
7秒前
华仔应助无限妙梦采纳,获得10
7秒前
DTxiball发布了新的文献求助10
8秒前
FU发布了新的文献求助10
8秒前
9秒前
xy发布了新的文献求助10
9秒前
Carlyle发布了新的文献求助10
9秒前
9秒前
hero发布了新的文献求助10
9秒前
Fern发布了新的文献求助10
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487