亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A screening test proposal for congenital defects based on maternal serum metabolomics profile

代谢组学 医学 胎儿 队列 怀孕 生物信息学 产科 病理 生物 遗传学
作者
Jacopo Troisi,Martina Lombardi,Giovanni Scala,Pierpaolo Cavallo,Rennae S Tayler,S. J. K. Symes,Sean Richards,David Adair,Alessio Fasano,Lesley McCowan,Maurizio Guida
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:228 (3): 342.e1-342.e12 被引量:5
标识
DOI:10.1016/j.ajog.2022.08.050
摘要

ABSTRACT

Background

Historically, non-invasive techniques are only able to identify chromosomal anomalies that accounted for less than 50% of all congenital defects, while the others are diagnosed via ultrasound evaluations in later stages of pregnancy. Metabolomic analysis may provide a crucial improvement, potentially addressing the need for novel non-invasive and multi-comprehensive early prenatal screening tools. Indeed, a growing body of evidence outlines notable metabolic alterations in different biofluids derived from pregnant women carrying malformed fetuses, suggesting that such an approach may allow the discovery of biomarkers common to most fetal malformations. In addition, metabolomic investigations are inexpensive, fast, and risk-free, and often provide high diagnostic performance also allowing an early diagnosis.

Objective

The purpose of this study was to evaluate the diagnostic accuracy of an ensemble machine learning model based on maternal serum metabolomic signatures for detecting fetal malformations, including both chromosomal anomalies and structural defects.

Study Design

We describe a multi-center observational retrospective study which includes two different arms. In the first, a total of 654 Italian pregnant women (334 cases, carrying malformed fetuses and 320 controls, with normal developing fetuses) were enrolled and used to train an ensemble machine learning classification model based on serum metabolomics profiles. In the second arm, serum samples obtained from 1935 participants of the New Zealand SCOPE study were blindly analyzed and used as a validation cohort. Untargeted metabolomics analysis was performed via gas chromatography-mass spectrometry. Nine individual machine learning classification models were built and optimized via cross-validation (Partial Least Square Discriminant Analysis, Linear Discriminant Analysis, Naïve Bayes, Decision Tree, Random Forest, k-nearest neighbor, Artificial Neural Network, Support Vector Machine, and Logistic regression). Then, an ensemble of them was developed according to a voting scheme statistically weighted by the cross-validation accuracy and classification confidence of the individual models. This ensemble machine learning system was used to screen the validation cohort.

Results

Significant metabolic differences were detected in women carrying malformed fetuses, who exhibited lower amounts of palmitic, myristic and stearic acids, N-α-acetyllysine, glucose, L-acetylcarnitine, fructose, p-cresol and xylose and higher levels of serine, alanine, urea, progesterone and valine (p<0.05) when compared to controls. When applied to the validation cohort, the screening test showed a 99.4%±0.6% accuracy (specificity=99.9±0.1% [1892/1894 controls correctly identified] with a sensitivity=78±6% [32/41 fetal malformations correctly identified]).

Conclusion

In conclusion, the present study provides a clinical validation of a metabolomics-based prenatal screening test to detect the presence of congenital defects. Further investigations are needed in order to enable the identification of the type of malformation as well as to confirm these findings on even larger study populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄选手完成签到 ,获得积分10
1秒前
江城一霸完成签到,获得积分10
1秒前
枝头树上的布谷鸟完成签到 ,获得积分10
14秒前
平淡如天完成签到,获得积分10
26秒前
SciGPT应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
41秒前
崔迎松发布了新的文献求助10
1分钟前
崔迎松完成签到,获得积分10
1分钟前
susu307完成签到 ,获得积分10
1分钟前
热心一江发布了新的文献求助10
1分钟前
wangyf完成签到,获得积分10
1分钟前
JamesPei应助小白白采纳,获得10
1分钟前
lin.xy完成签到,获得积分10
1分钟前
caitlin驳回了Akim应助
1分钟前
满意的草莓完成签到,获得积分10
2分钟前
完美世界应助满意的草莓采纳,获得10
2分钟前
慕青应助Aspringin采纳,获得10
2分钟前
2分钟前
贤嘚嘚完成签到,获得积分20
2分钟前
舒心亦瑶完成签到 ,获得积分20
2分钟前
贤嘚嘚发布了新的文献求助10
2分钟前
小袁完成签到 ,获得积分10
2分钟前
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
yacon完成签到,获得积分10
2分钟前
端庄的如花完成签到 ,获得积分10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
小白白发布了新的文献求助10
2分钟前
yacon发布了新的文献求助50
2分钟前
yyds发布了新的文献求助10
2分钟前
浅蓝完成签到 ,获得积分10
2分钟前
木槿发布了新的文献求助10
2分钟前
yyds完成签到,获得积分10
2分钟前
劳健龙完成签到 ,获得积分10
2分钟前
Jasper应助yacon采纳,获得10
2分钟前
稳重岩完成签到 ,获得积分10
2分钟前
3分钟前
可爱的函函应助刘坦苇采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4456919
求助须知:如何正确求助?哪些是违规求助? 3922049
关于积分的说明 12170938
捐赠科研通 3572963
什么是DOI,文献DOI怎么找? 1962660
邀请新用户注册赠送积分活动 1001867
科研通“疑难数据库(出版商)”最低求助积分说明 896563