A Pilot Cross-Sectional Study of Immunological and Microbiome Profiling Reveals Distinct Inflammatory Profiles for Smokers, Electronic Cigarette Users, and Never-Smokers

支气管肺泡灌洗 免疫系统 微生物群 免疫学 基因表达谱 生物 基因表达 炎症 基因 巨噬细胞 微生物学 分子生物学 医学 遗传学 内科学 体外
作者
Peter G. Shields,Kevin L. Ying,Theodore M. Brasky,Jo L. Freudenheim,Zihai Li,Joseph McElroy,Sarah A. Reisinger,Min‐Ae Song,Daniel Y. Weng,Mark D. Wewers,Noah B. Whiteman,Yiping Yang,Ewy A. Mathé
出处
期刊:Microorganisms [Multidisciplinary Digital Publishing Institute]
卷期号:11 (6): 1405-1405 被引量:2
标识
DOI:10.3390/microorganisms11061405
摘要

Smokers (SM) have increased lung immune cell counts and inflammatory gene expression compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflammatory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28). RNASeq with the CIBERSORT computational algorithm were used to determine immune cell subtypes, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68, 19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and inversely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct lung profiles for each participant group. There were three bacteria genera–DEG correlations and three bacteria genera–macrophage subtype correlations. In this pilot study, SM and EC use were associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刻苦大叔发布了新的文献求助10
2秒前
八宝粥完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
4秒前
小二郎应助黄建雨采纳,获得10
4秒前
5秒前
5秒前
邓翰林发布了新的文献求助10
5秒前
百里健柏发布了新的文献求助10
6秒前
6秒前
慕青应助momo采纳,获得10
6秒前
我不想仙姑名字完成签到,获得积分10
8秒前
hwezhu发布了新的文献求助10
9秒前
福宝发布了新的文献求助10
9秒前
9秒前
无花果应助哀家长头发啦采纳,获得10
10秒前
11秒前
11秒前
wanci应助猪猪hero采纳,获得10
11秒前
beibei完成签到,获得积分10
11秒前
12秒前
orixero应助56采纳,获得10
13秒前
13秒前
帕克发布了新的文献求助10
14秒前
15秒前
这橘不甜发布了新的文献求助30
16秒前
苏靖完成签到,获得积分10
17秒前
xiaxianong发布了新的文献求助10
17秒前
18秒前
dox发布了新的文献求助10
18秒前
23秒前
科研通AI5应助lll采纳,获得10
24秒前
25秒前
my发布了新的文献求助10
26秒前
xiaxianong完成签到,获得积分10
26秒前
星辰大海应助treelet007采纳,获得10
26秒前
12233完成签到,获得积分10
27秒前
Dean完成签到 ,获得积分10
27秒前
gyy发布了新的文献求助10
27秒前
自信放光芒~完成签到,获得积分10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351