Transfer Learning Enhanced Graph Neural Network for Aldehyde Oxidase Metabolism Prediction and Its Experimental Application

新陈代谢 药物代谢 醛氧化酶 代谢网络 代谢途径 计算机科学 生物化学 异型生物质的 机器学习 计算生物学 化学 生物 黄嘌呤氧化酶
作者
Jiacheng Xiong,Rongrong Cui,Zhaojun Li,Wei Zhang,Runze Zhang,Zunyun Fu,Xiaohong Liu,Zhenghao Li,Kaixian Chen,Mingyue Zheng
标识
DOI:10.1101/2023.06.05.543711
摘要

Abstract Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HL发布了新的文献求助10
1秒前
2秒前
cuizhiyu发布了新的文献求助10
4秒前
孟寐以求发布了新的文献求助10
4秒前
6秒前
小二郎应助暖冬22采纳,获得30
7秒前
我送的是挂历完成签到,获得积分10
8秒前
ding应助甜蜜咖啡豆采纳,获得10
10秒前
10秒前
Daisy应助yyao采纳,获得10
10秒前
10秒前
SSSDDDYYY发布了新的文献求助10
11秒前
11秒前
13秒前
LL完成签到,获得积分10
13秒前
14秒前
思源应助失眠冰岚采纳,获得10
15秒前
15秒前
SSSDDDYYY完成签到,获得积分20
15秒前
蜡笔小新发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
爆米花应助马铭泽采纳,获得30
17秒前
爱听歌醉山完成签到,获得积分10
17秒前
肥猫啊平发布了新的文献求助10
18秒前
ncuwzq完成签到,获得积分10
18秒前
打打应助啦啦啦啦啦采纳,获得10
19秒前
哈哈Ye发布了新的文献求助10
21秒前
Jupiter 1234发布了新的文献求助10
21秒前
欣妍完成签到,获得积分10
22秒前
bkagyin应助天天小女孩采纳,获得10
22秒前
NL完成签到,获得积分10
23秒前
Akim应助porkpork采纳,获得10
23秒前
徐瑶瑶完成签到,获得积分10
24秒前
林夏发布了新的文献求助10
25秒前
小甄甄给小甄甄的求助进行了留言
25秒前
桃之夭夭完成签到,获得积分10
26秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4013553
求助须知:如何正确求助?哪些是违规求助? 3553603
关于积分的说明 11315039
捐赠科研通 3287429
什么是DOI,文献DOI怎么找? 1811874
邀请新用户注册赠送积分活动 887529
科研通“疑难数据库(出版商)”最低求助积分说明 811808