TRAmHap: accurate prediction of transcriptional activity from DNA methylation haplotypes in bisulfite-sequencing data

德纳姆 DNA甲基化 发起人 表观遗传学 生物 增强子 染色质 基因 基因表达调控 基因表达 遗传学 甲基化 计算生物学 转录调控
作者
Siqi Gao,Hanwen Zhu,Kangwen Cai,Leiqin Liu,Zhiqiang Zhang,Yi Ding,Yaochen Xu,Xiaoqi Zheng,Jiantao Shi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:1
标识
DOI:10.1093/bib/bbad214
摘要

Abstract Deoxyribonucleic acid (DNA) methylation (DNAm) is an important epigenetic mechanism that plays a role in chromatin structure and transcriptional regulation. Elucidating the relationship between DNAm and gene expression is of great importance for understanding its role in transcriptional regulation. The conventional approach is to construct machine-learning-based methods to predict gene expression based on mean methylation signals in promoter regions. However, this type of strategy only explains about 25% of gene expression variation, and hence is inadequate in elucidating the relationship between DNAm and transcriptional activity. In addition, using mean methylation as input features neglects the heterogeneity of cell populations that can be reflected by DNAm haplotypes. We here developed TRAmaHap, a novel deep-learning framework that predicts gene expression by utilizing the characteristics of DNAm haplotypes in proximal promoters and distal enhancers. Using benchmark data of human and mouse normal tissues, TRAmHap shows much higher accuracy than existing machine-learning based methods, by explaining 60~80% of gene expression variation across tissue types and disease conditions. Our model demonstrated that gene expression can be accurately predicted by DNAm patterns in promoters and long-range enhancers as far as 25 kb away from transcription start site, especially in the presence of intra-gene chromatin interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助sleeping采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
YN3585发布了新的文献求助10
1秒前
高兴的悟空完成签到,获得积分10
2秒前
ding应助S.W.Liao采纳,获得10
2秒前
研友_ZAVod8完成签到,获得积分10
2秒前
lj-TJUT完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
陈陈完成签到,获得积分10
5秒前
善学以致用应助蓝荆采纳,获得10
5秒前
haibing完成签到,获得积分20
5秒前
6秒前
大模型应助清爽身影采纳,获得10
6秒前
Orange应助nail采纳,获得10
6秒前
zzx完成签到,获得积分10
7秒前
Sujikkk发布了新的文献求助10
7秒前
坦率的匪完成签到,获得积分0
7秒前
7秒前
过往关注了科研通微信公众号
7秒前
浮游应助榛子采纳,获得10
7秒前
8秒前
8秒前
9秒前
Whan应助淡定星星采纳,获得10
9秒前
9秒前
娃哈哈完成签到,获得积分10
9秒前
CodeCraft应助爱科研的chen采纳,获得10
9秒前
简单男孩发布了新的文献求助10
10秒前
10秒前
雪白发布了新的文献求助10
10秒前
科研通AI5应助Pfuz采纳,获得10
10秒前
Tina应助xiaohe采纳,获得10
10秒前
西西完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154634
求助须知:如何正确求助?哪些是违规求助? 4350313
关于积分的说明 13545065
捐赠科研通 4193152
什么是DOI,文献DOI怎么找? 2299764
邀请新用户注册赠送积分活动 1299749
关于科研通互助平台的介绍 1244797